
Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 1
Copyright © 2003 Paul Yao & David Durant

Chapter 3
The .NET Type System

This chapter provides a tour through the .NET types needed for Compact Framework
programming. [Comment 3.1]

Author's Note: In this review chapter C#-Specific Text is highlighted in YELLOW.
Namespaces.. 2

Namespaces, Classes, Methods, and Fields ... 3
Accessing Namespaces ... 4
Referencing Assemblies... 5

Standard Types ... 7
Value Types.. 8

Integer and Floating Point Value Types .. 8
Data Structure Value Types .. 10

Reference Types .. 11
Declaration, Initialization, and Allocation.. 12
Value Types and Reference Types as Parameters ... 13

Value Types as Parameters .. 14
Reference Types as Parameters... 14

Strings.. 15
Literal Strings.. 15
The System.String Class .. 16

String Properties, Methods, and Operators... 16
Value Type or Reference Type? ... 17
Strings Are Immutable ... 17
The Other Side of Immutability.. 18

The System.Text.StringBuilder Class .. 18
String Resources .. 18

Type Conversion ... 20
Numeric Conversion... 21

Explicit Conversion .. 21
The Overflow Exception .. 22
Handling Exceptions.. 23
Converting Strings to Numbers ... 23

String Conversion ... 24
Numeric Formatting... 24
Character Set Conversion ... 25
Creating Formatted Strings ... 25

Converting Values to Objects... 26
Memory Management.. 27

Metadata Maps... 27
The Jitted Code Pool .. 28
Garbage Collector Pools .. 29
Garbage Collection and Data ... 30
Automatic Garbage Collection.. 31

Phase 1: Mark and Sweep .. 31
Phase 2: Compact ... 32
Phase 3: Flush Jitted Code Pool ... 32

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.1

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 2
Copyright © 2003 Paul Yao & David Durant

Special Handling for Managed Data... 32
Calling the Garbage Collector ... 32
Manual Cleanup using Dispose .. 33
Implementing Class-Specific Cleanup Methods: Dispose and Finalize 33
Weak References.. 37

Manual Garbage Collection for Native Data... 37
Conclusion... 42

.NET programming provides a high level of interoperability between programming

languages. Interoperability is achieved by a set of common standards. Among the .NET
technologies that Microsoft submitted to ECMA1, a European standards body, was the Common
Language Infrastructure (CLI). The CLI contains basic infrastructure elements of .NET, but
excludes the high-level Windows Forms and Web Forms classes. To interoperate with other
.NET-compatible languages, a compiler must comply with the CLI. This chapter focuses on one
of those standards: the Common Type System (CTS). [Comment 3.3]

The .NET type system provides the foundation for a strongly-typed, object-oriented
programming environment. Strong-typing codifies a programmer's intent for how each data item
by choosing the most appropriate type. Once the type is chosen, errors can be detected at both
build-time (by the compiler) and at runtime (by the runtime system). The .NET execution engine
takes this one step further, supporting verifiable code which relies on strong typing to insure that
the code does not access out-of-bounds memory. [Comment 3.4]

An object-oriented approach organizes the raw material of software – meaning the code that
runs and the data that is operated on – as objects. The content and behavior of an object is
defined, in turn, by its type – that is, by its class. Programmers use classes to organize code and
data. Using the terminology of .NET, we say that a class is a set of methods and fields, where a
method is the most fundamental type of code, and a field is the most fundamental type of data.
[Comment 3.5]

This chapter reviews the elements of the .NET framework type system that Compact
Framework programmers are likely to need. Our intent is not to teach C# programming – there
are other books better suited for that purpose. Nor is our intent to provide a complete discussion
of the intricacies of .NET internals, a fascinating subject which is addressed in other, more
specialized, books2. [Comment 3.6]

 Because this book focuses on C#, we expect readers to have learned C# programming from
other sources. For readers with a background in C++ and object-oriented theory, we provide
some boxed discussions labeled "For C++ Programmers." For readers with a background in VB6
programming, we provide some boxed discussions labeled "For VB6 Programmers." [Comment
3.7]

Namespaces
To help organize the large number of types that are inevitable in a large, multi-faceted

programming environment, C# programmers use namespaces. A namespace provides part of an
object's identity; it is the family name for a set of types. For example, the System.Drawing
namespace is the family of types used to create graphical output. Within that namespace are two
sibling classes, Brush and Pen. The fully-qualified names for these types are

1 ECMA web site: www.ecma-international.org
2 We recommend Essential .NET: The Common Language Runtime by Don Box with Chris Sells,
Addison-Wesley, 2003.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.3
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.4
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.5
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.5
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.6
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.7
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.7

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 3
Copyright © 2003 Paul Yao & David Durant

System.Drawing.Brush and System.Drawing.Pen. The fully-qualified name gives these
types a unique identity among the vast set of .NET-compatible types. [Comment 3.8]

Every .NET program and library file contains metadata, a dictionary of the types defined in a
module3. At build time, a compiler creates metadata, which the execution engine uses at runtime.
Objects are instantiated using type information, and code verified for compatibility with the
supported types. Every .NET type is defined in an executable module file as metadata. [Comment
3.9]

Namespaces, Classes, Methods, and Fields
Namespaces are optional, but we like using them to help organize our code. For class

libraries, the convention is that the name of a namespace should also be the name of the DLL file.
For example, in the Compact Framework, the System.Windows.Forms namespace resides
inside the file System.Windows.Forms.dll. Microsoft suggests combining these elements for
namespace names in public libraries: company name, technology name, feature, and design. In
the examples for this book, we use the YaoDurant namespace for shared libraries, or for source
files explicitly built for reuse. [Comment 3.10]

In .NET, everything is a value or an object. As a result, stand-alone data – what C++
programmers and VB programmers call global variables – does not exist. Stand-alone global
functions also do not exist. Instead, both code and data must live within a class. [Comment 3.11]

The two fundamental .NET types are fields and methods. The tiny fragment in listing 3-1
shows a field and a method defined in a class. The class, in turn, lives in a namespace,
YaoDurant.Identity. [Comment 3.12]

Listing 3-1 Namespaces contain classes, which contain fields and methods [Comment
3.13]

namespace YaoDurant.Identity
{
 public class SimpleType
 {
 public int i;

 public int ReturnInteger()
 {
 return i;
 }

 } // class
} // namespace

This code contains examples of four key elements of the .NET type system: [Comment 3.14]

• A namespace – YaoDurant.Identity [Comment 3.15]
• A class - SimpleType [Comment 3.16]
• A field - i [Comment 3.17]
• A method - ReturnInteger [Comment 3.18]

3 By module, we mean an application (.exe) file or a dynamic link library (.dll) file. Some
programming environments use the term to refer to a source file.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.8
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.9
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.9
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.10
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.11
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.12
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.13
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.13
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.14
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.15
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.16
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.17
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.18

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 4
Copyright © 2003 Paul Yao & David Durant

The fully-qualified name for the class is YaoDurant.Identity.SimpleType, and the fully-
qualified name for the method is YaoDurant.Identity.SimpleType.ReturnInteger. We
discuss the using statement in the next section, which lets you reference a namespace to avoid
having to use fully-qualified names. [Comment 3.19]

A program source file can have any number of namespaces. The only thing which can reside
in a namespace is another namespace, or a class. The purpose of namespaces is to help organize
classes, which are the general-purpose container for holding type information. A class is able to
contain all other types, including other classes. (A namespace is not a type, and so cannot be
contained in a class.) [Comment 3.20]

Accessing Namespaces
A fully-qualified name provides an unambiguous way to identify a class, methods in a class,

and static (or shared) fields. That is a good thing. When you look at the code generated for you by
the forms designer, you see a lot of fully-qualified names. The forms designer writes the code for
you. It later reads the code when you decide to edit a form. In this context, a fully-qualified name
helps the forms designer avoid confusion. [Comment 3.21]

The disadvantage of fully-qualified names is that they require a lot of typing. To avoid this
extra effort, C# programmers indicate the namespaces they wish to use with a set of using
statements. For example, if we had a separate source file, module, or assembly which needed to
access the types in our namespace, we would eliminate the need for fully-qualified names with a
statement like the following:

using YaoDurant.Identity;

Assembly versus Namespace
Close reading of the CLI reveals that an assembly, not a namespace, forms
the outermost container of the .NET type system. One reason is that
some CLI-compatible languages might not support namespaces. For
most purposes, a namespace serves as the outermost container for
everything in the .NET type system. There are times, however, when a
namespace falls short of providing what we need. [Comment 3.23]

A program sometimes needs to identify itself to the execution engine.
There is no namespace class; instead, we use an object created from the
Assembly4 class. We use an assembly object to access resources in a
module, to load and run programs and shared libraries, and also to query
for type information. [Comment 3.24]

By itself, a using statement hints at desired namespaces, but does not
indicate what actual module to use. For that, you must add a reference to
a Visual Studio .NET project, a subject we discuss in the accompanying
text. [Comment 3.25]

On the desktop, an assembly can be created from two or more modules.
The Compact Framework does not support multi-module assembly, so
every assembly has exactly one module associated with it. [Comment 3.26]

4 Fully-qualified name: System.Reflection.Assembly.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.19
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.20
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.21
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.23
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.24
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.25
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.26

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 5
Copyright © 2003 Paul Yao & David Durant

When you create a new Smart Device project in Visual Studio .NET, the Smart Device

Application Wizard creates a set of using statements for you, as shown in figure 3-1. These are
not needed to build the code that has been generated for you, because the forms designer uses
fully-qualified names. Instead, these references tell the IDE about the namespaces needed to
support IntelliSense.
Figure 3-1 Using declarations created by the Smart Device Application Wizard

Referencing Assemblies
An assembly reference provides the names of the shared libraries that a .NET program (or

shared library) is going to use. Unlike a namespace, which is a logical container for a set of
classes, an assembly consists of one or more module files which are the physical container for a
set of classes. Any using statements provide a hint about what namespaces might be interesting,
but those statements are purely optional. The assembly reference, on the other hand, is not
optional. [Comment 3.31]

When the Smart Device Application Wizard creates a project for you, it adds a set of
assembly references to your project. Figure 3-2 shows an example of the default set that are
provided for you in the solution explorer window. You add new assembly references by
summoning the Add Reference dialog box (from the Visual Studio menu, select Project -> Add
Reference...; or Right-Click on the Solution Explorer and select Add Reference...). [Comment
3.32]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.31
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.32
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.32

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 6
Copyright © 2003 Paul Yao & David Durant

Figure 3-2 Assembly references created by the Smart Device Application Wizard

The minimum assembly reference required for all .NET programs is mscorlib.dll, a short

name that stands for "Microsoft Core Library." As the name implies, this library holds the core
elements for the .NET runtime system. This sounds like an important library to understand, and
so you might wonder how to explore this library. One approach, which we mention in chapter 1,
is to use ILDASM – the IL disassembly tool. Another approach is to use the object browser in
Visual Studio .NET. In figure 3-3, we show the object browser displaying the contents of
mscorlib.dll. The left-side shows available namespaces and also classes in the
System.Threading namespace. The right-side shows details for the public members of the
Thread class. [Comment 3.35]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.35

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 7
Copyright © 2003 Paul Yao & David Durant

Figure 3-3 The Object Browser showing the contents of mscorlib.dll [Comment 3.36]

Standard Types
The portion of Common Language Infrastructure that addresses data types is known as the

Common Type System (CTS). The primary motivation for a common type system - and the other
elements of the CLI - is to promote interoperability between programming languages. The CTS is
sometimes referred to as a unified type system. This term reflects the fact that two groups of types
that are often split apart in some object-oriented environments are designed in a way that
minimizes the differences. In the CTS, the two groups are called Value Types and Reference Types.
[Comment 3.37]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.36
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.37
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.37

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 8
Copyright © 2003 Paul Yao & David Durant

Value Types
Value types are simple, low-overhead types intended to hold pure data. The CTS defines a

core set of values types that all compilers must support to be able to interoperate with other .NET-
compatible compilers. Value types are typically supported by language-specific keywords.
Integer and floating point numbers, for example, are value types. Also included among value
types are data structures. Examples of value types include the following: [Comment 3.38]

• integers
• floating-point numbers
• data structures
• enumerations

Value types are meant to be small and fast, avoiding the inevitable overhead of objects. When
used as a local variable, a value type is always allocated on the stack. When nested in an object,
the value type is represented as a simple stream of bytes. Value types can also be placed into
fixed-length arrays. [Comment 3.39]

Take Int32, for example, the type which describes 4-byte signed integers. Such integers can
be quickly loaded into 32-bit CPU registers and operated on. In the unified type system of .NET,
the 4-byte signed integer is represented by the System.Int32 class. Like other classes, there are
methods for operating on 4-byte integers. We can, for example, call the ToString() method to
convert an integer to a string, as shown in listing 3-2. [Comment 3.40]

Listing 3-2 Value types have methods just like reference types [Comment 3.41]

 int cCount = 10;
string strCount = cCount.ToString();
string strAnother = 10.ToString();

A value type can have other elements of objects, including fields. For example, the Int32

class has two static fields, MaxValue and MinValue, which define the range of numbers
supported by this class. (All numeric value types have similarly named static fields.) [Comment
3.42]

Like all value types, the System.Int32 class has a base class named System.ValueType.
And that class, in turn, has a base class named System.Object. This is the same base class
which all .NET types share in common, yet another aspect of the unified type system. [Comment
3.43]

Value types do have their limitations. While they are defined as .NET classes, they
themselves are considered sealed classes. In other words, you cannot use System.Int32 (or any
other value-type class) as the base class for other types. [Comment 3.44]

Integer and Floating Point Value Types
Table 3-1 shows the basic set of built-in numeric value types in C#. Each data type in our

table is defined in two ways – as a .NET type, and as a language-specific alias. Which one should
you use? It is probably a matter of personal taste, since the language-specific alias gets converted
by the compiler to the associated .NET type. We generally prefer language-specific aliases, and
that is what you find in the sample code written for this book. For example, we use int instead of
System.Int32 or Int32, which makes our type definitions more consistent with the rest of our
code. The C# compiler converts the language-specific alias into the corresponding .NET type.
[Comment 3.45]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.38
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.39
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.40
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.41
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.42
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.42
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.43
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.43
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.44
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.45
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.45

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 9
Copyright © 2003 Paul Yao & David Durant

Table 3-1 Basic set of built-in value types [Comment 3.46]

.NET Type CLI
Compat?

Size
(Bytes)

C# Alias

System.Boolean Yes 1 bool
System.Byte Yes 1 byte
System.SByte No 1 sbyte
System.Char Yes 2 char
System.Int16 Yes 2 short
System.UInt16 No 2 ushort
System.Int32 Yes 4 int
System.UInt32 No 4 uint
System.IntPtr Yes 4
System.Single Yes 4 float
System.Int64 Yes 8 long
System.UInt64 No 8 ulong
System.Double Yes 8 double
System.Decimal Yes 12 decimal

For C++ Programmers:
Experienced Windows programmers who worked in C and C++ are likely
to be uncomfortable at first with using native language types like int and
char in Windows code. For many years, Microsoft recommended that
Windows programmers use types like LPSTR and LONG in place of the
equivalent C-types char * and long. The use of the upper-case types
(LPSTR and LONG) played a significant part in making Win16 code
extremely portable to the Win32 API when it was introduced in the early
1990s. [Comment 3.47]

The reasons for those recommendations had more to do with limitations
on the part of the C language than on anything inherently wrong with
using built-in language types. For example, the implementer of a C
compiler got to decide whether an int was 16, 32, or even 64 bits. (For a
system software language like C, that choice arguably should be made on
a system-specific basis.) [Comment 3.48]

The language specification for C#, however, does not allow for that kind
of flexibility. Instead, int is defined as a 32-bit signed integer equivalent
to System.Int32, and long is defined as a 64-bit integer equivalent to
System.Int64. There is no need for a portability layer with .NET
programming languages, because the common type system provides the
standard. Changes – like the addition of a 128-bit integer – will come as
extensions and not revocations of the existing standard. [Comment 3.49]

The second column of table 3-1 indicates whether a type is compatible with the CLI or not. If

you plan to build assemblies that provide full interoperability with all other .NET languages, then
you want to use types with a Yes in this column. For the fourteen types in the table, four are not
CLI-compliant: [Comment 3.50]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.46
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.47
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.48
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.49

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 10
Copyright © 2003 Paul Yao & David Durant

• System.SByte – signed 1-byte integer
• System.UInt16 – unsigned 2-byte integer
• System.UInt32 – unsigned 4-byte integer
• System.UInt64 – unsigned 8-byte integer

 By avoiding these types in C# code, we enable our shared assemblies to be called from Visual
Basic programs, because Visual Basic does not support these four types. We also gain
compatibility with other CLI-compatible languages which may become available in the Compact
Framework. [Comment 3.51]

You might notice in the online .NET documentation that built-in value types are referred to as
structures. Figure 3-4 shows a portion of the MSDN Library table of contents, in which the
Int32 type is called Int32 Structure. You probably do not think of numeric types as data
structures. [Comment 3.52]
Figure 3-4 The Table of Contents for MSDN Library refers to value types as Structures
[Comment 3.53]

Data Structure Value Types
Within .NET, data structures are value types. The Compact Framework includes support for a

large number of data structures which are used for the basic operation of the windowing and
graphic systems. Table 3-2 summarizes some of the more commonly used structures in a
Compact Framework program. [Comment 3.54]

For VB6 Programmers:
The VB6 keyword, Type, for user-defined types, does not exist in VB
.NET; VB.NET provides an alternative keyword, the Structure keyword,
for user-defined types. [Comment 3.55]

For C++ Programmers:
A C++ programmer can think of a C# structure as similar to a C++
structure, with an important difference: while C++ allows a structure to
behave like a class and vice-versa, a C# structure is distinctly different
from a C# class. The former is a value type, while the latter is a reference
type. We discuss that difference later in this chapter. [Comment 3.56]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.50
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.51
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.52
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.53
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.53
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.54
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.55
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.56

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 11
Copyright © 2003 Paul Yao & David Durant

Table 3-2 Common Compact Framework structures [Comment 3.57]
Namespace Class Description
System DateTime Store date, time, or both date and time.

System.Drawing Color Store color as RGB, a system color, or a named
color.

System.Drawing Point An (x,y) location with integer coordinates.

System.Drawing Rectangle An area defined with integer coordinates as a pixel
grid, meaning a non-rotated rectangle with a top and
bottom, a left and right.

System.Drawing RectangleF An area defined with floating-point coordinates as a
pixel grid, meaning a non-rotated rectangle with a
top and bottom, a left and right.

System.Drawing Size A width & height pair for the size of a rectangle,
with integer coordinates.

System.Drawing SizeF A width & height pair for the size of a rectangle,
with floating-point coordinates.

System Guid A globally-unique identifier. Used in COM
programming and network programming.

System IntPtr A signed 32-bit wrapper for unmanaged code pointer
and handles. (A 64-bit wrapper on 64-bit platforms,
but Windows CE – and therefore the Compact
Framework – only runs on 32-bit platforms.)

System TimeSpan Stores time duration.

Reference Types
The second major category of CTS types is the set known as Reference Types. Objects of

reference types are accessed at runtime using a reference, a pointer to the object itself. Examples
of reference types include the following: [Comment 3.58]

• Objects created from a class
• Objects encapsulating Win32 system objects (forms, controls, graphic objects,

threads, mutexes, files, etc.)
• Arrays
• Strings
• Boxed value types

Just as there are built-in value types, there are also built-in reference types. These types form
the foundation for the efficient operation of the type system. Our criteria for built-in reference
types are that IL instructions create or require a type, a set which includes: [Comment 3.59]

• System.Object – the base type from which all other types are derived.
• System.String – immutable string class.
• System.Array – Fixed-length array.
• System.Exception – Execution errors.
• Pointers – There are three pointer types, but only one is exposed to the type system:

System.IntPtr. Other pointers are used by the execution engine as references to
instantiated objects.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.57
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.58
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.59

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 12
Copyright © 2003 Paul Yao & David Durant

Every object has a standard object header. The size of the object header5 is 8 bytes, and the
smallest possible object (an instance of type object) is 12 bytes. This is the smallest possible
object, which we mention here simply to underscore that reference types take up a slight bit more
space than value types. Object headers contain references to class type information. A program
can access this type information using a set of services known as reflection and available through
classes in the System.Reflection namespace. In addition to the header, objects contain
instance data: the public and private fields defined for the object's type. [Comment 3.60]

Reference types have complete support for object-oriented programming. The most useful
feature is inheritance, which lets you define new reference types from existing reference types.
When defining a custom type that you expect to use as a base for other new types, the base type
must be a class. Custom types that inherit from existing types, in turn, can only inherit from other
reference types. [Comment 3.61]

By contrast, inheritance is not supported for value types. Value types are said to be sealed,
since a value type cannot be used as a base type for other types. (A reference type can also be
sealed, using the sealed keyword, which prevents that type being used as the base type for new
types.) [Comment 3.62]

Objects of reference types are allocated on the runtime heap, and so are subject to garbage
collection. Objects without a live reference – either directly in a local variable, or indirectly
through another object – are called unreachable objects. When the garbage collector reclaims
memory, it reclaims the memory occupied by unreachable objects. To make an object
unreachable, set the value in the variable to null: [Comment 3.63]

object obj = new object();
obj = null;

Reference Types versus Value Types
When we teach our .NET programming classes, a common discussion
topic involves the relative merits of reference types versus value types.
Reference types are larger and more complex than value types. In terms
of memory and processing time, then, reference types are more costly
than value types. Is one better than the other? [Comment 3.64]

This is an interesting question to ask in theory, but in practice both have
their natural uses. Value types have less memory overhead, are of a fixed
size, and are less extendable. By contrast, reference types are
extendable via inheritance, can change size, are inexpensive to pass as
parameters, are shareable between threads, have built-in thread
synchronization, and enjoy the benefits of automatic garbage collection.
[Comment 3.65]

Declaration, Initialization, and Allocation
There are differences between value types and reference types. But a casual look at any .NET

code makes those differences hard to detect because a common syntax works for both types of
types. Both value type variables and reference type variables can be declared, initialized, and
allocated with similar code. There is a real difference in the last step, however, namely in how the
two types are allocated. Consider the code in listing 3-3. This code defines two types that are

5 8 bytes are for 2 integer fields in 32-bit systems. Object headers in 64-bit systems are 16 bytes.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.60
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.61
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.62
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.63
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.64
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.65
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.65

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 13
Copyright © 2003 Paul Yao & David Durant

identical in every way, except that one is a value type and the other is a reference type. [Comment
3.66]

The MyClick method declares a variable of each type, p1 and p2. The use of new with both
types implies that a new object is being created. There is similar code, but a different dynamic
comes into play for each variable. Let's start with the value type, p1. [Comment 3.67]

Value types do not require the use of new when a parameter-less constructor is specified,
which is the case in this code. On the other hand, if we had a constructor defined with parameters
to pass, we would then use new. While optional, a parameter-less constructor for a value type is
benign. [Comment 3.68]

The p1 in our example is allocated on the stack. The compiler notices the use of a value type,
and includes space on the stack in the generated IL. At runtime, that space is automatically
included as a variable on the stack. [Comment 3.69]

On entry to the function, the contents of p1 are initialized to zero. This is true for all types,
including integers, floating-point, and decimal values. It is also true for reference type variables,
like p2 in our example. All variables start in a known, defined state. [Comment 3.70]

The use of new is required for reference types. On entry to the MyClick method, the local
variable p2 is initialized to zero. If we omit the new and then use that variable to access a
member, an exception is generated. Since an unhandled exception causes a program to terminate,
we want to avoid using variables for null reference types. [Comment 3.71]

When new is encountered for a reference-type variable, the memory allocator gets called to
create space in the runtime heap. In addition, one or more constructors are called for the object
starting with the constructor for Object, and including constructors in all other inherited classes
for our reference type. [Comment 3.72]

Listing 3-3 Comparing value types and reference types [Comment 3.73]

 // Structure -- a value type
 struct PointStruct
 {
 int X;
 int Y;
 }

 // Class - a reference type
 class PointClass
 {
 int X;
 int Y;
 }

 private void MyClick()
 {
 PointStruct p1 = new PointStruct();
 PointClass p2 = new PointClass();
 }

Value Types and Reference Types as Parameters
Value types and reference types look the same when you are allocating them and accessing

them, so sometimes you can ignore the distinction between them and let the compiler handle

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.66
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.66
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.67
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.68
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.69
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.70
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.71
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.72
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.73

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 14
Copyright © 2003 Paul Yao & David Durant

things. Aside from the way the need to use the new operator with reference types, the code that
you write for dealing with both types is quite similar. [Comment 3.74]

The difference between value types and reference types becomes important when you wish to
pass a parameter to a method. Both value and reference types can be passed as parameters, but the
declarations are different for each. Value types can be either by-value parameters or by-reference
parameters. Reference types can also be by-value parameters or by-reference parameter. The
majority of the time, however, both value types and reference types are passed as by-value
parameters. [Comment 3.75]

Value Types as Parameters
Value types are allocated as bits local to the owner – on the stack for local variables, and

within the object instance data when a class field. Value types can be passed either by-value or
by-reference. The value types which are 32-bits and smaller are normally passed by-value. Larger
value types and structures containing value types are often passed by-reference. When a value
type is passed by-value, a copy of the value is put on the stack. That value makes a one-way trip
into the called function, and the local copy of that value is not affected. [Comment 3.76]

When a value type is passed by-reference, an implicit pointer is put on the stack. The called
function uses that pointer to read the contents of our variable. The called function can also change
the contents of a variable, which is why we sometimes say that a by-reference parameter makes a
two-way trip – down to the called function, then back again with whatever changes the function
has made. Listing 3-4 shows value types passed as by-value parameters and as by- reference
parameters. Passing value parameters by-reference is particularly useful when calling certain
native Win32 functions, a topic we explore more fully in chapter 4 (Platform Invoke). [Comment
3.77]

Listing 3-4 Value types as parameters [Comment 3.78]

 private void ValueParameters()
 {
 // Init to one
 int i1 = 1;
 int i2 = 1;

 // Function adds one to each
 Increment(i1, ref i2);

 // On return:
 // i1 = 1
 // i2 = 2
 }

 // i is a value type parameter passed by value
 // pi is a value type parameter passed by reference
 private void Increment(int i, ref int pi)
 {
 i++;
 pi++;
 }

Reference Types as Parameters
Reference types are allocated from the process heap. A variable of a reference type contains a

pointer that refers to the object. The presence of a pointer in a reference type creates a funny sort

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.74
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.75
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.76
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.77
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.77
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.78

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 15
Copyright © 2003 Paul Yao & David Durant

of paradox: you pass a pointer to a reference type by declaring a by-value parameter. Passing a
reference type by-reference, then, creates a pointer to a pointer. This is rarely done, but the
capability exists for those few situations – such as with strings and in some calls to native code –
when it may be necessary. [Comment 3.79]

Strings
Strings get special treatment in the world of .NET programming. Special treatment makes

sense because strings are costly in terms of memory consumed, and also because strings are
required to communicate with people. The framework provides two main classes to support string
operations: System.String and System.Text.StringBuilder. [Comment 3.80]

To make optimal use of available memory, programmer working with string-intensive
applications need to understand how these two classes work. Difference centers on the issue of
immutability, a subject we explore later in this chapter. [Comment 3.81]

For programmers writing software to be made available in support of different languages,
strings add an additional level of complexity. A program written for Spanish-speaking users and
English-speaking users must have two sets of strings, one for each language. The use of string
resources allow a programmer to separate strings from code, to simplify the task of preparing
software for a multi-lingual end-user population. [Comment 3.82]

Literal Strings
In the "good old days"6 of Windows programming, we worried about literal strings. To

reduce overhead, a programmer put redundant strings into global variables (or in a string table).
As the Windows on the desktop got more RAM, fewer programmers worried about redundant
strings. [Comment 3.83]

With today's compilers, no one needs to worry about redundant literal strings. The reason is
that the C# compiler helps out by folding duplicate strings to reduce storage overhead. Listing 3-5
shows the SayHello method, in which "Hello" appears four times. The compiler reduces all
four references to refer to a single string. In this way, an executable file is smaller than it might
otherwise be. [Comment 3.84]

Listing 3-5 The SayHello Method [Comment 3.85]

 private void SayHello()
 {
 string str1 = "Hello";
 StringBuilder sb1 = new StringBuilder("Hello");
 MessageBox.Show("Hello", "Hello");
 }

At runtime, static strings are allocated from the heap like other types of objects. Allocation of

such strings is handled in a just-in-time fashion, in the same way that the IL-to-native translation
is handled. The runtime JIT compiler does not convert an entire module, but rather converts

6 Some of you may remember the days when, knee-deep in snow, we walked uphill (both ways)
to school. We allocated memory with a slide rule and drank from punch cards; we used scissors
to cut and chewing gum to paste.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.79
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.80
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.81
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.82
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.83
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.84
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.85

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 16
Copyright © 2003 Paul Yao & David Durant

individual methods as they are called. Part of the JIT process involves allocating static strings that
a specific method is going to need. [Comment 3.86]

The JIT compiler works in a way that allows the garbage collector to remove unreachable
strings, and yet eliminates redundant strings. If a static string has already been allocated on the
heap during the JITting of another method, the JIT compiler adds a new reference to the string but
does not create a second copy of the string. [Comment 3.87]

Literal strings are stored as UTF-16 (2-byte/character) Unicode characters in an executable
module. (Unicode is also the character set for strings in memory.) If you have many literal
strings, you might consider storing those strings as resources. Strings stored as resources are
stored in the smaller, more memory-efficient 1-byte (UTF-8) Unicode strings. We discuss the
creation of string resources later in this chapter. [Comment 3.88]

The System.String Class
A string is an array of characters. Most of the time, however, we do not want to deal with the

fussiness of arrays. Instead, we want an easy way to display a message to a user, or write an entry
to a log file that we can later read. We get all these things in the System.String class, which
provides a lightweight class useful for most string operations. [Comment 3.89]

String Properties, Methods, and Operators
The Length property provides instant access to the number of characters in the string. An

indexer ([n] operator in C#) lets us treat the string as an array of characters when we need the
benefits an array provides. A host of other member methods lets us search a string, add or remove
padding, or extract a substring. And best of all, the concatenation operator – the plus ('+') –
makes it easy to create a new string by joining two existing strings. Each of these is illustrated in
listing 3-6. [Comment 3.90]

These are all useful, but we think the most interesting string method is a member of the
Object class. For that reason, it is a string method that every .NET type supports. We refer here
to the ToString() method, which converts any object to a string, and provides an easy way to
get a string for any type of object. Listing 3-6 shows examples of calling the ToString()
method for an integer and a character. [Comment 3.91]

Listing 3-6 Common string operations [Comment 3.92]

 string str = "A literal string";
 int cb = str.Length;
 string strLength = "Length is " + cb.ToString();
 string strFirst = "First character is " + str[0].ToString();
 MessageBox.Show("String is " + str + "\n" +
 strLength + "\n" +
 strFirst);

For C Programmers
String operations in C are difficult and painful. C programmers celebrate
when they start .NET programming because of the pain they have
endured over the years. In particular, the '+' operator concatenates two

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.86
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.87
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.88
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.89
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.90
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.91
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.92

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 17
Copyright © 2003 Paul Yao & David Durant

strings. The Length property replaces the need to call strlen7 to
calculate a string length. Life, in short, gets easier. [Comment 3.93]

MFC programmers may yawn at hearing this, but that is because MFC
programmers have the CString class. VB programmers, for their part,
are equally unimpressed. Both come from a world where strings flow
freely, are easy to allocate, concatenate, and work with. [Comment 3.94]

Value Type or Reference Type?
It is sometimes said that the System.String class is a reference type that gets treated like a

value type. All other reference types require new for a new instance, but strings created from
literal strings do not, as shown in the way str gets allocated in listing 3-6. (You use new to
create strings from arrays.) [Comment 3.95]

Behavior like a value type can also be observed seen in situations where two
variables seem to refer to the same string, as in the following code: [Comment 3.96]

string str1 = "A";
string str2 = str1;
str2 = "B";

If strings were like other reference types, str1 and str2 would point to the same string, having
a value of "B", when the above code is executed. But strings are not like other reference types.
After the above assignments, str1 references "A" and str2 references a "B". The reason is
that strings are immutable, a subject we look at next. [Comment 3.97]

Strings Are Immutable
Another way that strings are treated as value types is often expressed by the phrase "strings

are immutable." The word "immutable" means unchangeable. In the system heap, a string is a
read-only object. Once created, a string does not change. [Comment 3.98]

Does this mean that you cannot change strings? Of course not! As a programmer it is your job
to change things. The string class contains methods like ToUpper() and ToLower(), which
changes the case of a string. But each function leaves the original string unchanged, and what you
get back is transformed copy. You can change strings, but any operation on a string leaves the
original string untouched. What happens to old strings?8 They remain on the heap to be used by
other references, or to be garbage collected when they are unreachable. [Comment 3.99]

Is there a good reason for making strings work this way? Yes, there are many good reasons,
all centered around making strings lightweight and easy to work with. As immutable objects,
strings can be passed as parameters and the caller knows that the original string cannot change.
[Comment 3.100]

Immutable (read-only) strings make multi-threaded programming easier, because two threads
can use a common set of strings, and no extra care need be taken to coordinate the sharing of
strings. By contrast, when a reference to a read/write objects get passed as parameters or shared
between two threads, there can be trouble. Sharing a read/write object requires strict rules to be
followed; sharing read-only objects requires much less care. [Comment 3.101]

7 Or wcslen() or _tcslen().
8 For fans of American-style football: Old strings, like old quarterbacks, fade back and pass away.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.93
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.94
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.95
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.96
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.97
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.98
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.99
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.100
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.100
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.101

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 18
Copyright © 2003 Paul Yao & David Durant

The Other Side of Immutability
Strings behave more like integers than like other objects. There is one difference, though,

which is that each operation on a System.String object creates a new item in the heap. By
contrast, nothing gets created on the heap for integer operations. [Comment 3.102]

The immutability of strings makes them easy to use, but the memory cost makes them a bad
fit for extensive string processing. What do we mean by extensive? We mean processing
involving any combination of many strings, large strings, or many string operations. For that kind
of processing, the second string class is the one to use – the string builder class. [Comment 3.103]

The System.Text.StringBuilder Class
The StringBuilder class provides a memory and processor efficient way to create mutable

strings for intensive string processing. For example, our P/Invoke Wizard tool uses a string
builder to read C/C++ function declarations and create equivalent managed code declarations.
[Comment 3.104]

The string builder class is not meant as a direct substitute for the regular string class. For one
thing, the two classes do not have any kind of inheritance relationship. Instead, you pass regular
strings into the various methods of the class, and use the string builder's ToString() method to
retrieve the final results. [Comment 3.105]

By itself, this class provides a good way to save memory. For optimal savings, however, you
should set the size of the buffer – defined with the Capacity property – with enough characters
for whatever strings you are planning to work with. The default capacity is 16 characters, which
is probably too small for all but the simplest operations. The capacity property also defines the
allocation granularity, so if you err you probably want to err on the high side. [Comment 3.106]

String Resources
String resources provide an alternative to putting literal strings in your code. Literal strings

can make it more difficult to build software for a multi-lingual end-user community. For non-
Asian languages, literal strings occupy twice as much space as the same strings stored as
resources. String resources are worth a consideration, although their use does take a bit more
effort than literal strings. [Comment 3.107]

To create string resources, add an XML resource file to your project with the Visual Studio
menu: Project | Add New Item... and pick Assembly Resource File from the available types. The
extension for XML resources files is .resx. Figure 3-4 shows a set of strings we create (the
second column) and the associated names (the first column), for which we are using single letters
for simplicity. [Comment 3.108]

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.102
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.103
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.104
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.104
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.105
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.106
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.107
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.108

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 19
Copyright © 2003 Paul Yao & David Durant

Figure 3-4 Creating string resources in Visual Studio [Comment 3.109]

Like everything in .NET, XML resources are strongly typed. This is important to keep in

mind because we access resources using a fully-qualified name. As with code, a fully-qualified
name for a resource involves combining a namespace with a type name. The type name for the
resource in figure 3-4 is the file name without the extension ("Strings"). The namespace is the
default namespace for the project, which we can find in the project properties window. For our
sample project, the default namespace is "StringResources". [Comment 3.110]

To access the strings in this string table, we create a resource manager object from the
ResourceManager9 class. The constructor for that object requires an identifier for the assembly
object for our assembly, an object of type Assembly10. To access individual strings, we call the
GetString method on the resource manager, specifying the string identifier. In our example, the
string identifiers are the four letters for the four strings: "A", "B", "C", and "D". Listing 3-7
summarizes each of the steps needed to load the strings and display then when the form receives a
Paint event. [Comment 3.111]

Listing 3-7 Loading and using string resources. [Comment 3.112]

//...
using System.Resources; // Needed for ResourceManager
using System.Reflection; // Needed for Assembly
//...
namespace StringResources
{
 //...

 // Resource manager for our set of strings.
 ResourceManager resman;

 // The four strings we load
 string strA;
 string strB;
 string strC;
 string strD;

 private void
 FormMain_Load(object sender, System.EventArgs e)

9 Fully-qualified name: System.Resources.ResourceManager.
10 Fully-qualified name: System.Reflection.Assembly.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.109
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.110
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.111
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.112

Programming the .NET Compact Framework in C# By Paul Yao & David Durant

Chapter 3 – Data Types Page 20
Copyright © 2003 Paul Yao & David Durant

 {
 // Create the resource manager.
 Assembly assembly = this.GetType().Assembly;
 resman = new ResourceManager(
 "StringResources.Strings", assembly);

 // Load the strings.
 strA = resman.GetString("A");
 strB = resman.GetString("B");
 strC = resman.GetString("C");
 strD = resman.GetString("D");
 }

 private void
 FormMain_Paint(object sender, PaintEventArgs e)
 {
 float sinX = 10;
 float sinY = 10;
 SizeF szf;

 Brush brText = new SolidBrush(SystemColors.WindowText);
 szf = e.Graphics.MeasureString(strA, Font);

 e.Graphics.DrawString(strA, Font, brText, sinX, sinY);
 sinY = sinY + szf.Height;
 e.Graphics.DrawString(strB, Font, brText, sinX, sinY);
 sinY = sinY + szf.Height;
 e.Graphics.DrawString(strC, Font, brText, sinX, sinY);
 sinY = sinY + szf.Height;
 e.Graphics.DrawString(strD, Font, brText, sinX, sinY);
 sinY = sinY + szf.Height;
 }

//...

Type Conversion
In a strongly-typed environment, type conversions play an important role in adding flexibility

to the strict rules of the type system. Strong type checking is meant to help the programmer, but
can be a hindrance. For example, integers can be used in arithmetic operations, but must be
converted to strings for display to users. Within .NET, a rich set of conversion features helps
reduce the friction that sometimes occurs in a strongly-typed system. [Comment 3.113]

In some cases, conversion support is built into the language syntax. C# supports casting, and
VB .NET has CType and DirectCast, among its conversion functions. There are subtle
differences between the conversions provided by each language. In converting a floating-point
number to an integer, for example, C# truncates the remainder while VB .NET rounds the
remainder. [Comment 3.114]

A third set of conversion services is provided by various parts of the framework. In some
cases, the framework duplicates existing language services. The Convert11 class, for example,

11 Fully-qualified name: System.Convert.

http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.113
http://www.paulyao.com/ReaderFeedback/Feedback.aspx?ID=3.114

Chapter 1, 1

Thank You
Thank you for taking the time to read this preview chapter. We hope it has provided you

insights and tips to help with your Compact Framework programming project. You can help us
create a better book by clicking the comment link at the end of each paragraph, and sending your
comments and suggestions on our review web site.

Preview Chapter Text
Our public review site provides the complete table of contents for the Compact Framework

book at this link: http://www.paulyao.com/cfbook.htm. That table of contents contains links to all
the preview chapters. The preview chapter provides the complete outline of topics covered in a
chapter, and also the first section or two from each chapter.

Complete Chapter Text
You can get the complete text for each chapter, available to readers who register at our web

site. Registration is simply and easy – we only ask for an email address. To register, click on this
link: http://www.paulyao.com/ReaderFeedback/Logon.aspx.

When you register, you can download the available chapters from the full-text Table of
Contents, available at this link: http://www.paulyao.com/ReaderFeedback/default.aspx. We notify
registered readers of new chapters – and chapter updates – as they become available.

http://www.paulyao.com/cfbook.htm
http://www.paulyao.com/ReaderFeedback/Logon.aspx
http://www.paulyao.com/ReaderFeedback/default.aspx

