

VB.NET Programming
By mkaatr

This ebook is a quick introduction to VB.NET programming language. It explains
the very basics of the language with screenshots showing what is expected to see
during development process.

2010

mkaatr
http://www.mkasoft.com

10/13/2010

2

VB.NET Programming

By mkaatr

3

Table of Contents
Introduction .. 4

Chapter 1: Installation ... 5

Chapter 2: Understanding the IDE ... 32

Chapter 3: Understanding Buttons, and Textboxes .. 68

Chapter 4: Dialogs and Menus ... 109

Chapter 5: Understanding variables .. 133

Chapter 6: Variables again, group box, list box .. 139

Chapter 7: IF statement ... 150

Chapter 8: FOR statement ... 158

Chapter 9: Arrays .. 163

Chapter 10: Collections ... 169

Chapter 11: Functions ... 177

Chapter 12: ByVal & ByRef .. 185

Chapter 13: Subroutines .. 189

Chapter 14: Do Loop ... 193

Chapter 15: Structures .. 200

Chapter 16: Modules ... 208

Chapter 17:Classes .. 218

Chapter 18: Classes Initialization and Finalization .. 242

Chapter 19: Classes and Inheritance .. 248

Chapter 20: Try & Catch .. 258

4

Introduction

 This ebook is the result of combining a number of tutorials available on the site. It

gives basic information about using the language, however it does not cover every aspect

of the language. There are lots to learn. I tried to put screen shots in most of the tutorials

along with the source files embedded in the PDF file itself. If you still need to see how to

do some stuff, check the website, there you can watch video tutorials which cover the

same exact topics in this book.

 Feedback is highly appreciated. If you have any comments, notes, or

recommendations, send them to notes@mkasoft.com. Finally if you find this book

useful, you might want to support this work and further tutorials by sending a small

donation to donation@mkasoft.com.

Thank you.

mkaatr

mailto:notes@mkasoft.com
mailto:donation@mkasoft.com

Chapter 1:Installaton

5

Chapter 1: Installation

Chapter 1:Installaton

6

Installation

Installation of VB.NET should not be hard to do. The installation might be a little

different since Microsoft updates the site from time to time. All you have to do is follow

the steps below:

Scrool down and select offine install. You need to burn this ISO image into a disk before

using it… or you can select web install for Visual Basic .net…

Chapter 1:Installaton

7

Select Visual Basic 2008 from the list…

Chapter 1:Installaton

8

The installation appears after a few seconds

Chapter 1:Installaton

9

Wait for a while

Chapter 1:Installaton

10

Click next…

Chapter 1:Installaton

11

Read the agreement and agree about it… then click next…

Chapter 1:Installaton

12

Select the MSDN (the help library) and Silver Light then click next…

Chapter 1:Installaton

13

Click next…

Chapter 1:Installaton

14

The installation starts…

Chapter 1:Installaton

15

After a while a restart will be required… click restart now…

Chapter 1:Installaton

16

Do not press or do anything… the installation continues automatically…

Chapter 1:Installaton

17

After the installation finishes, press exit… now let us test the VB.Net and write a simple

application.

Chapter 1:Installaton

18

Go to All Programs->Microsoft Visual Basic 2008…

Chapter 1:Installaton

19

VB will start…

Chapter 1:Installaton

20

This is only a quick test… the next lessons explains what happens in detail… so for now

this is the IDE (Integrated Development Environment) that you build your applications

with…

Chapter 1:Installaton

21

Select File->New Project

Chapter 1:Installaton

22

Select Windows Forms, and give a name to your first application, then press OK.

Chapter 1:Installaton

23

Your application contains one window… you can modify it visually without doing any

programming…

Chapter 1:Installaton

24

Put the mouse pointer over the small square on the corner, and drag the window’s corner

and see what happens … you are resizing the window very easily…

Chapter 1:Installaton

25

To test this window, you hit the play button… the play button runs your application, to

stop the application hit the stop button or close the application window…

Chapter 1:Installaton

26

You can test the window and see it behaves like many XP forms or Vista forms…

Chapter 1:Installaton

27

Now stop the application and search for Back color property from the list on the right…

Chapter 1:Installaton

28

Press the small arrow that appears, and select General as shown In the image above…

then select a color that you like.

Chapter 1:Installaton

29

Now search for the Text property and replace its value with anything you like …

Chapter 1:Installaton

30

Run the application…

Chapter 1:Installaton

31

Very easy… still one last thing… you should save the application. Just Hit the Save all

icon from the tool bar…and select save…

Chapter 2:Understanding the IDE

32

Chapter 2: Understanding the IDE

Chapter 2:Understanding the IDE

33

Understanding the IDE

In this chapter, we will understand a little bit about the IDE, and what does it

provide, so later on it will be easier for us to work on applications,

Open VB.NET

Chapter 2:Understanding the IDE

34

Now this is the IDE, in order to work with it, there should be an application, so we will

create a new application in order to discover the IDE, and see what does it provide and

how does it help us.

Chapter 2:Understanding the IDE

35

Open a new project

Chapter 2:Understanding the IDE

36

The new project dialog box appears, select windows forms application, and supply a

name for your project

Chapter 2:Understanding the IDE

37

Press OK

Chapter 2:Understanding the IDE

38

Now you see the IDE. The central part is your working area, there you write code, design

the user interface, and do many other things. What you are seeing now is the how the user

interface looks like.

Chapter 2:Understanding the IDE

39

Next part is the solution explorer. This part you can see the main files that your

application is consisting of. You use it to quickly move from one part of the application

to the other.

Chapter 2:Understanding the IDE

40

Next is the properties window. This window changes according to what you are doing

right now. For example, whenever you select a file from the Solution Explorer window, it

changes itself to show you only the properties related to that specific file. It works the

same way with the graphical user interface in the central area (the GUI).

Chapter 2:Understanding the IDE

41

Select Form1.vb from within the solution explorer window by clicking it once and see

how the properties change to view the relevant information. Try to select My project

again by clicking it one and see how the properties changes again.

Chapter 2:Understanding the IDE

42

Now as I said before, the Solution explorer helps you navigate your application quickly.

So now try double clicking My Project to see something similar to the above. Now you

can modify your application. This is just an example, so don’t worry about the details of

all these options we will come to this later.

Chapter 2:Understanding the IDE

43

Now double click on Form1.vb you see the GUI again. Now let us work a little with these

toys. Right now, our application has one window. We want to say, change its size. To do

so, you drag one of the white boxes.

Chapter 2:Understanding the IDE

44

Notice also how does the properties window change to help you work on what you have

just selected (here the window is selected so the properties window is showing its

properties).

Chapter 2:Understanding the IDE

45

Now let us work with the properties window. Each object (window, or file or control)

within the IDE has a number of properties that affects its behavior, and/or appearance.

For example, if you search for a property called Text and change it, you can modify the

title that appears on the window.

Chapter 2:Understanding the IDE

46

Try entering this is the second test and then press enter. You can see how does that

affects the window you are designing.

Chapter 2:Understanding the IDE

47

Now let us work with another property, which is BackColor, try to choose a color and see

how does that affects the window’s color.

Chapter 2:Understanding the IDE

48

And so on, there are many other properties, we will learn just some of these that are

commonly needed.

Chapter 2:Understanding the IDE

49

Now we come to the left side which we forget to tell you about. This one helps you

adding controls to your window. For now click on the command button , and then draw it

on the window (the command button is used to trigger some kind of actions or

processing, more details on that later).

Chapter 2:Understanding the IDE

50

By pressing the mouse button continuously, you can specify the dimensions of that

control. After that release the mouse button.

Chapter 2:Understanding the IDE

51

You can see how does your window look like. You can move the button by dragging it,

or you can resize it using the white boxes. Also check out the properties window that

shows you the properties of this button.

Chapter 2:Understanding the IDE

52

Now click on any empty space on your form to select it, and see how the properties

window shows details about the selected object.

Chapter 2:Understanding the IDE

53

Now select the button again. You remember that when we wanted to change window title

we modified the Text value for our window. The same is true for the button, and many

other controls, so change the button’s Text property to hello and see how does the GUI

changes as well.

Chapter 2:Understanding the IDE

54

Next place a LABEL on the form. The Labels are used to display text information

Chapter 2:Understanding the IDE

55

Chapter 2:Understanding the IDE

56

Now change the label to view the message: press the button

Chapter 2:Understanding the IDE

57

Now try to move the control and see how the IDE will help you place it relative to the

label by showing you imaginary lines for placing the control on the form

Chapter 2:Understanding the IDE

58

Chapter 2:Understanding the IDE

59

Chapter 2:Understanding the IDE

60

Chapter 2:Understanding the IDE

61

Now run the application by pressing the Play button. Now pressing the button does not do

anything at all. That is because you haven’t tell the computer what to do when you press

the button.

Chapter 2:Understanding the IDE

62

Now stop the running application by closing the window, then double click on the button,

you should see something like this.

Chapter 2:Understanding the IDE

63

This is the code editor which helps you telling application what should it does in a

specific event. For our example telling it what should it does when you press the button.

Chapter 2:Understanding the IDE

64

Write the lines above exactly as you see, the code means the following:

Button1.Text = "hello my friend" means that go to the button on the form

those name is Button1, and modify its Text property to hello my friend. (more on that in

the next tutorial).

Me.Text ="change form title" changes the title of the form by changing its

Text property, and the same for the last line which changes it for the label.

It is important to understand that the Text property here is the same one that you changed

in the properties window. The properties window changes the properties while you are

designing the window, hence the first change you did is a design time change. However

the code you just added will not be executed until you press the button while the

application is running (i.e. run time), so such changes are not visible (yet).

Now press F5 to see the application running

Chapter 2:Understanding the IDE

65

Now press the button and see what happens

Chapter 2:Understanding the IDE

66

Don’t worry too much about the code. The idea here is to know that there are some

properties that can be modified later on, and make you familiar with the GUI.

The next tutorial will explain about controls, their names, and their events. So for now

you may save your project by pressing save all

Chapter 2:Understanding the IDE

67

This concludes this chapter.

Chapter 3: Understanging Buttons, and Textboxes

68

Chapter 3: Understanding Buttons, and Textboxes

Chapter 3: Understanging Buttons, and Textboxes

69

Understanding Buttons, and Textboxes

This chapter deals with buttons and textboxes. We are going to see how to

develop a simple calculator application using VB.NET, and examine the controls and

their properties.

First open VB.NET

Create a new project

Chapter 3: Understanging Buttons, and Textboxes

70

Set its type to windows forms application and set its name to calculator. Press OK

Chapter 3: Understanging Buttons, and Textboxes

71

You should see the main form on the workspace

Chapter 3: Understanging Buttons, and Textboxes

72

Change the form text property to My Calculator, you don’t want your application to

have the title Form1 when it starts.

Chapter 3: Understanging Buttons, and Textboxes

73

From the ToolBox, drop a TextBox control onto the form, and resize it.

Chapter 3: Understanging Buttons, and Textboxes

74

After setting the text box location, we will change its Name property. This property

allows us to modify and access this control at runtime and change its behavior, or

perform something for us. So, set it to LCD since it will be used to display the numbers.

You can leave the name TextBox1 without change, or select any other name. Keep in

mind that the name you choose will be used instead of LCD in the code. Note that the

Name property does not have any visible effect, you can’t see the result of its change,

because it will be used internally only to reference this control.

Chapter 3: Understanging Buttons, and Textboxes

75

Now, we start working with the display, usually when the calculator starts it should

display the number 0. In out case it does not. So we modify the Text Property and write 0

in that. Make sure you don’t add any spaces before or after the 0.

Chapter 3: Understanging Buttons, and Textboxes

76

The second thing to note is that the number is aligned to the left, while calculators align

the number to the right. Search for the TextAlign property and change it to Right.

This what the window will look like.

Chapter 3: Understanging Buttons, and Textboxes

77

By the way, we forgot to save the project, so, press save all. It is good practice to save

your work every few minutes.

Now if you run the application, you will notice that you can access the text box via the

cursor, and write some text, or remove the text. You don’t want that to happen. Simply

change the ReadOnly property to True. Notice that once the ReadOnly property is ture,

the text box will look like this:

Chapter 3: Understanging Buttons, and Textboxes

78

The solution to this problem is simple. Go to the BackColor property of the text box and

select the white color for it.

The window should look fine, next we will add the buttons to the form.

Chapter 3: Understanging Buttons, and Textboxes

79

From the tool box window, drag and drop a Button onto the form.

Chapter 3: Understanging Buttons, and Textboxes

80

Change its Name property to n1. This will help us identify which number was pressed.

Chapter 3: Understanging Buttons, and Textboxes

81

Change the backcolor property for the button, usually you can select from Custom a

different color other than the ones the system provide.

Chapter 3: Understanging Buttons, and Textboxes

82

After the color changes, we will modify the text that the button is displaying, so change

the text property into 1.

Chapter 3: Understanging Buttons, and Textboxes

83

Now the number is very small, we can increase its size a little bit, so go to the font

property, and set its font to courier new, and size to 20 for example.

Chapter 3: Understanging Buttons, and Textboxes

84

Now we can repeat the same operation to all the other nine buttons, or we can just copy

this button and get the same result quickly. Just hold the ctrl key and drag the control.

Repeat the operation again for all the numbers

Chapter 3: Understanging Buttons, and Textboxes

85

Now we change the names of the buttons (or you can leave them as they are and skip this

part). The names will continue to be n2,n3,n4,n5,n6,n7,n8,n9, and n0.

Next we change the text property for each one to display the numbers from 1 to 9, and 0

finally.

Now if you run the application, you won’t be able to do anything, i.e. the form appears,

and pressing the buttons will have no effect. This is because we haven’t tell the

application what to do when you click any of the buttons. So, double click the button N1

to go to its event

LCD

N1

N2

N4

N0

N9

N6

N7

N3

N5

N8

Chapter 3: Understanging Buttons, and Textboxes

86

What you see here is a procedure or subroutine. This is a small block of code that you

write to tell the application what to do when a button is clicked. The n1_Click is the

name of this procedure. It tells you that it get executed when the button whose name n1 is

clicked by the user. Write down the code to have it like this:

Private Sub n1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n1.Click

LCD.Text = LCD.Text & "1"

End Sub

Note:I made the text small so that it fits one line. In VB.NET the new line is a sentence

terminator.

The code means the following:

Private Sub part defines the subroutine. It is part of the language (or keywords as they

call it).

Chapter 3: Understanging Buttons, and Textboxes

87

n1_Click is the name of that subroutine. You can use the name to call the subroutine

whenever you need. The name can be anything you choose. More on that in later

tutorials.

(ByVal sender As System.Object, ByVal e As System.EventArgs) : these are

called the arguments. The allow the subroutine to be flexible by checking some inputs, to

process things differently. More on that later.

Handles n1.Click : this one means that this subroutine will be automatically called

whenever the button n1 is clicked by the end user.

LCD.Text = LCD.Text & "1" : this is the processing we are performing when we press

the button 1. Its meaning is add to the current text on the display (which we call LCD)

the number 1. Note that we used the Text property which we modified previously using

the properties window.

End Sub : signals the end of subroutine.

You should repeat the code for buttons n2,n3,n4,n5,n6,n7,n8,n9, and n0 to add the

numbers 2,3,4,5,6,7,8,9,0 respectively. So the code should look like this:

 Private Sub n1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n1.Click

 LCD.Text = LCD.Text & "1"

 End Sub

 Private Sub n2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n2.Click

 LCD.Text = LCD.Text & "2"

 End Sub

 Private Sub n3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n3.Click

 LCD.Text = LCD.Text & "3"

 End Sub

 Private Sub n4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n4.Click

 LCD.Text = LCD.Text & "4"

 End Sub

Chapter 3: Understanging Buttons, and Textboxes

88

 Private Sub n5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n5.Click

 LCD.Text = LCD.Text & "5"

 End Sub

 Private Sub n6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n6.Click

 LCD.Text = LCD.Text & "6"

 End Sub

 Private Sub n7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n7.Click

 LCD.Text = LCD.Text & "7"

 End Sub

 Private Sub n8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n8.Click

 LCD.Text = LCD.Text & "8"

 End Sub

 Private Sub n9_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n9.Click

 LCD.Text = LCD.Text & "9"

 End Sub

 Private Sub n0_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n0.Click

 LCD.Text = LCD.Text & "0"

 End Sub

Now run the application and click few buttons:

Chapter 3: Understanging Buttons, and Textboxes

89

Next we create the clear button, copy the 0 button, and place the copy next to the 0.

Change its name to bc, and text property to C.

Chapter 3: Understanging Buttons, and Textboxes

90

Now if you double click the C button, you will go to the code handler of 0. Check the

code and you will see that this subroutine will handle the events of n0.click and bc.click.

Actually this will make both buttons behave the same way, so you should create a

separate handler for bc. The reason why VB.NET linked them together into the same

subroutine, is that you copied n0, so VB assumes that the copies should behave the same

way as the original. What you should do now is remove the , bc.Click from the procedure

and then create the handler for clear button.

Chapter 3: Understanging Buttons, and Textboxes

91

Just go back to design window, then double click the C button and add the text shown

above. Try to run the program, clicking some numbers and then pressing the C button.

Chapter 3: Understanging Buttons, and Textboxes

92

Now assuming you know now how to copy a control and change its text property, now,

add the operations as shown above. Next name them as follows:

+ name is bad

- name is bsub

* name is bmult

/ name is bdiv

= name is bequal

And then remove their handlers from the subroutines because we want to write new event

handlers for them.

Chapter 3: Understanging Buttons, and Textboxes

93

Double click the + button to go to the code window. Now add the code :

 Dim FirstNumber As Long

 Dim Operation As String

FirstNumber is a variable that helps the application remember integer numbers. The

reason we use it is to keep track of the last number we entered into the calculator. When

we press any operation the display is going to be cleared and so the number is lost, so this

variable will store the number before it is removed from the display. Operation is a

variable used to remember the last operation that is being pressed. It will store +,-,*,/.

Next add the following code event handles into the subroutines of +,-,*,/ respectively:

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "+"

Chapter 3: Understanging Buttons, and Textboxes

94

The - event hanlder

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "-"

The * event handler

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "*"

The / event handler

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "/"

So the code should look like

 Private Sub badd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles badd.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "+"

 End Sub

 Private Sub bsub_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bsub.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "-"

 End Sub

 Private Sub bmult_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bmult.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "*"

 End Sub

Chapter 3: Understanging Buttons, and Textboxes

95

 Private Sub bdiv_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bdiv.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "/"

 End Sub

The last thing to do is the = handler where the operation should be executed

 Private Sub bequal_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bequal.Click

 Dim SecondNumber As Long

 Dim Result As Long

 SecondNumber = LCD.Text

 If Operation = "+" Then

 Result = FirstNumber + SecondNumber

 ElseIf Operation = "-" Then

 Result = FirstNumber - SecondNumber

 ElseIf Operation = "*" Then

 Result = FirstNumber * SecondNumber

 ElseIf Operation = "/" Then

 Result = FirstNumber / SecondNumber

 End If

 FirstNumber = Result

 LCD.Text = Result

 End Sub

The code first gets the value from the display, then it check the last operation, if it is

addition, then the result will be the sum of the number in memory and the number just we

get from the display. If subtraction then subtract one from the other and so on. Finally

store the result into memory for further operations on it (you can neglect that, it is not that

you have to do it), and then display the result by updating the text property of LCD.

Now run the application and try adding two numbers like 30 and 5:

Chapter 3: Understanging Buttons, and Textboxes

96

Next you will notice that when you enter any number you always gets a zero before that

number. This is meaningless and should not happen in a calculator. So we will update our

code to get rid of the zero in case we clicked on any number (0,1,2,3,4,5,6,7,8,9) and

there is a 0 in the display. So update the code to be:

 Private Sub n1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n1.Click

 If LCD.Text = "0" Then

 LCD.Text = "1"

 Else

 LCD.Text = LCD.Text & "1"

 End If

 End Sub

 Private Sub n2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n2.Click

 If LCD.Text = "0" Then

 LCD.Text = "2"

 Else

 LCD.Text = LCD.Text & "2"

 End If

 End Sub

 Private Sub n3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n3.Click

 If LCD.Text = "0" Then

 LCD.Text = "3"

 Else

 LCD.Text = LCD.Text & "3"

 End If

 End Sub

 Private Sub n4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n4.Click

 If LCD.Text = "0" Then

Chapter 3: Understanging Buttons, and Textboxes

97

 LCD.Text = "4"

 Else

 LCD.Text = LCD.Text & "4"

 End If

 End Sub

 Private Sub n5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n5.Click

 If LCD.Text = "0" Then

 LCD.Text = "5"

 Else

 LCD.Text = LCD.Text & "5"

 End If

 End Sub

 Private Sub n6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n6.Click

 If LCD.Text = "0" Then

 LCD.Text = "6"

 Else

 LCD.Text = LCD.Text & "6"

 End If

 End Sub

 Private Sub n7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n7.Click

 If LCD.Text = "0" Then

 LCD.Text = "7"

 Else

 LCD.Text = LCD.Text & "7"

 End If

 End Sub

 Private Sub n8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n8.Click

 If LCD.Text = "0" Then

 LCD.Text = "8"

 Else

 LCD.Text = LCD.Text & "8"

 End If

 End Sub

Chapter 3: Understanging Buttons, and Textboxes

98

 Private Sub n9_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n9.Click

 If LCD.Text = "0" Then

 LCD.Text = "9"

 Else

 LCD.Text = LCD.Text & "9"

 End If

 End Sub

 Private Sub n0_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n0.Click

 If LCD.Text = "0" Then

 LCD.Text = "0"

 Else

 LCD.Text = LCD.Text & "0"

 End If

 End Sub

This is not the best way to write the code, but it is just to practice working in the

environment. Later on we will get into the language itself and understand how it works

after understanding most of the controls.

Now run the application and see that the zero disappears when you click any number.

After checking that the calculator is working fine, we will make some changes into it.

First we change the size of the font in the LCD to be a little bit bigger so select the LCD

control (the textbox whose name is LCD), and change its Font property

Chapter 3: Understanging Buttons, and Textboxes

99

Try to get a result similar to this:

Next we will modify the form behavior so that it does not change size.

Chapter 3: Understanging Buttons, and Textboxes

100

First try to position the controls again to look more professional, you can move all the

controls together by selecting them all. The selection works by drawing a box that embed

them all. Next click on any empty space on the form so that you can change its properties

Chapter 3: Understanging Buttons, and Textboxes

101

Change Backcolor property as you see fit.

Chapter 3: Understanging Buttons, and Textboxes

102

Next change the FormBorderStyle property from Sizable to FixedSingle, this will

prevent your calculator from being resized.

Chapter 3: Understanging Buttons, and Textboxes

103

Finally change the MaximizeBox for your form to be False. This prevents the form from

being maximized.

Chapter 3: Understanging Buttons, and Textboxes

104

So this is how your calculator should look like.

Just in case it does not work, the code should be as below assuming you used the same

names:

Public Class Form1

 Dim FirstNumber As Long

 Dim Operation As String

 Private Sub n1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n1.Click

 If LCD.Text = "0" Then

 LCD.Text = "1"

 Else

 LCD.Text = LCD.Text & "1"

 End If

 End Sub

Chapter 3: Understanging Buttons, and Textboxes

105

 Private Sub n2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n2.Click

 If LCD.Text = "0" Then

 LCD.Text = "2"

 Else

 LCD.Text = LCD.Text & "2"

 End If

 End Sub

 Private Sub n3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n3.Click

 If LCD.Text = "0" Then

 LCD.Text = "3"

 Else

 LCD.Text = LCD.Text & "3"

 End If

 End Sub

 Private Sub n4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n4.Click

 If LCD.Text = "0" Then

 LCD.Text = "4"

 Else

 LCD.Text = LCD.Text & "4"

 End If

 End Sub

 Private Sub n5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n5.Click

 If LCD.Text = "0" Then

 LCD.Text = "5"

 Else

 LCD.Text = LCD.Text & "5"

 End If

 End Sub

 Private Sub n6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n6.Click

 If LCD.Text = "0" Then

 LCD.Text = "6"

 Else

 LCD.Text = LCD.Text & "6"

 End If

Chapter 3: Understanging Buttons, and Textboxes

106

 End Sub

 Private Sub n7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n7.Click

 If LCD.Text = "0" Then

 LCD.Text = "7"

 Else

 LCD.Text = LCD.Text & "7"

 End If

 End Sub

 Private Sub n8_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n8.Click

 If LCD.Text = "0" Then

 LCD.Text = "8"

 Else

 LCD.Text = LCD.Text & "8"

 End If

 End Sub

 Private Sub n9_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n9.Click

 If LCD.Text = "0" Then

 LCD.Text = "9"

 Else

 LCD.Text = LCD.Text & "9"

 End If

 End Sub

 Private Sub n0_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles n0.Click

 If LCD.Text = "0" Then

 LCD.Text = "0"

 Else

 LCD.Text = LCD.Text & "0"

 End If

 End Sub

 Private Sub bc_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bc.Click

 LCD.Text = "0"

 End Sub

Chapter 3: Understanging Buttons, and Textboxes

107

 Private Sub badd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles badd.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "+"

 End Sub

 Private Sub bsub_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bsub.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "-"

 End Sub

 Private Sub bmult_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bmult.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "*"

 End Sub

 Private Sub bdiv_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bdiv.Click

 FirstNumber = LCD.Text

 LCD.Text = "0"

 Operation = "/"

 End Sub

 Private Sub bequal_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bequal.Click

 Dim SecondNumber As Long

 Dim Result As Long

 SecondNumber = LCD.Text

 If Operation = "+" Then

 Result = FirstNumber + SecondNumber

 ElseIf Operation = "-" Then

 Result = FirstNumber - SecondNumber

 ElseIf Operation = "*" Then

 Result = FirstNumber * SecondNumber

 ElseIf Operation = "/" Then

 Result = FirstNumber / SecondNumber

Chapter 3: Understanging Buttons, and Textboxes

108

 End If

 FirstNumber = Result

 LCD.Text = Result

 End Sub

End Class

Chapter 4: Dialogs and Menus

109

Chapter 4: Dialogs and Menus

Chapter 4: Dialogs and Menus

110

Dialogs and Menus

In this chapter we will be designing a simple Notepad application. Please notice

that this chapter focuses only on the controls not the code. More about the code later…

Create a new project and name it: My Notepad

Chapter 4: Dialogs and Menus

111

Rename the form title to My Notepad by modifying the Text property of the form.

Chapter 4: Dialogs and Menus

112

Drop a text box on the form.

Chapter 4: Dialogs and Menus

113

The problem with text boxes are that you can only use it to write a single line. To solve

this, modify the text box property Multiline to True. This will allow you to write

multiple lines in the text box and modify its height. Resize the text box to take the full

size of the window

Chapter 4: Dialogs and Menus

114

Run the application, and try to write some text. You can see it works fine.

Next try to resize the window. Now you see there is a problem. The text box does not

resize itself to match window size.

Chapter 4: Dialogs and Menus

115

To solve this select the text box and change the Anchor property. This property specifies

how should the text box resize itself when its parent container resize itself (the window).

The anchor side specifies how far the edge of the control should be from the border of the

outer window (or any other control). Specifying the Anchor to be Top, Left, Right,

Bottom means that whenever the size of the window changes, the text box changes itself

so that its sides keeps the same distance from window border. Try changing the anchor

settings and test the application and resizing the window.

Chapter 4: Dialogs and Menus

116

Next we start working with menus. Search for a control called MenuStrip and drop it on

the window.

Chapter 4: Dialogs and Menus

117

The control appears under the window as MenuStrip1 which is the name of the control.

The actual menu appears on the form itself. You can create the menu quickly by just start

typing. Try typing File.

Notice that when you write a menu entry, you can extend it horizontally, and vertically.

Under the file menu add the New, Open, Save, and Close menu items.

Chapter 4: Dialogs and Menus

118

Next you will write the code to handle the events for these menu items. Now in the

workspace just double click the New menu item.

As with the previous tutorial you get the code editor. Write down the following:

TextBox1.Text = ""

This will clear the text box and allow you to write next text. Add the following code to

the close menu item.

End

This will close the application. The code should look like this:

Private Sub NewToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles NewToolStripMenuItem.Click

TextBox1.Text = ""

End Sub

Chapter 4: Dialogs and Menus

119

Private Sub CloseToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles CloseToolStripMenuItem.Click

 End

End Sub

Notice that I haven’t change controls names (the menu items name property). You can

change the name to a more friendly one as we did in the previous tutorial. Also the

NewToolStripMenuItem.Click and CloseToolStripMenuItem.Click are on the same line

as Handles .

Run the application, try to write some text, then select File->New. Then try File->Close.

Next we see how to save text.

Search for a control called SaveFileDialog and drop it on the form. You won’t see any

visual change to the form itself. You can see there is save file dialog available under the

window. This control allows you to specify where to save files on the file system and it

looks like the window below:

Chapter 4: Dialogs and Menus

120

Let us modify the filter property of the dialog. Click on SaveFileDialog1 to display its

properties.

Now change the Filter property to be like that:

Set it to be: Text files|*.txt

This property prevents the user form mistakenly saving the file in formats other than text.

The Text files part is displayed to the end user, while the *.txt is used to filter the files

and make sure you only select or overwrite text (ending with .txt) files.

The next step is to write the code to save the text written in your application into the disk.

Add the code in the handler of the Save menu item by double clicking it then typing:

SaveFileDialog1.ShowDialog()

If SaveFileDialog1.FileName = "" Then

Exit Sub

End If

' this part saves the file

FileSystem.FileOpen(1, SaveFileDialog1.FileName, OpenMode.Output)

FileSystem.Print(1, TextBox1.Text)

FileSystem.FileClose(1)

The code is explained as follows:

SaveFileDialog1.ShowDialog(): this instructs the application to show the Save dialog

on the screen so that you can specify the file name. When you select a name for the file,

you can get it from the control using the FileName property.

If SaveFileDialog1.FileName = "" Then

Exit Sub

Chapter 4: Dialogs and Menus

121

End If

The code above checks if the FileName is not specified, in other words if you pressed the

cancel button when the dialog is shown, the FileName will be empty. So in this case no

saving will happen and the execution path of the code exits the subroutine.

FileSystem.FileOpen(1, SaveFileDialog1.FileName, OpenMode.Output)

FileSystem.Print(1, TextBox1.Text)

FileSystem.FileClose(1)

This part saves the text into the file. The SaveFileDialog1.FileName property allows you

to get the name of the file. TextBox1.Text gets the text from the text box.

Chapter 4: Dialogs and Menus

122

Run the application, write some text, and then select File->save. Save your file into the

desktop. You can open this text file via the standard notepad as shown below:

Chapter 4: Dialogs and Menus

123

Now we work on the File->Open part. Search for the OpenFileDialog control and drop

it on the form. Change FileName property and remove all the text from it. And change

the filter property to: Text files|*.txt. and finally go to the File->Open event handler by

double clicking the Open menu item, And then add the following code:

OpenFileDialog1.ShowDialog()

If OpenFileDialog1.FileName = "" Then

Exit Sub

End If

' this part loads the file

Dim Tmp As String

Tmp = ""

FileSystem.FileOpen(1, OpenFileDialog1.FileName, OpenMode.Input)

Do While Not FileSystem.EOF(1)

Tmp = Tmp & FileSystem.LineInput(1)

 If Not FileSystem.EOF(1) Then

 Tmp = Tmp & Chr(13) & Chr(10)

End If

Chapter 4: Dialogs and Menus

124

Loop

FileSystem.FileClose(1)

TextBox1.Text = Tmp

The OpenFileDialog works very similar to the SaveFileDialog so there is no much to

explain about it. After testing this part, we will work with the font. We want to add the

ability to change the size and type of the font in the text box to make it easier to read. So

add menu entries Edit, and Font, then add the FontDialog control.

 Next double click the Font menu item to built its handler.

FontDialog1.ShowDialog()

TextBox1.Font = FontDialog1.Font

Try to run the application and select the Font menu item

Chapter 4: Dialogs and Menus

125

Now let us improve out menu now. Right now the menu cannot be accessed using the

keyboard. You can make it accessible using the Alt key and some letter. For example

click once on the file menu item. Now you can change the text displayed on the menu

item. Modify it to be &File. This will have the effect of adding the ability to access the

menu item using the Alt+F combination. Perform the same operation for other menu

items to be &New, &Open, &Close, &Save, &Edit. The letter after the & symbol is

always the access key.

Chapter 4: Dialogs and Menus

126

Try to run the application, then pressing Alt+F, then O to show the open file dialog as a

test to see if it works.

Chapter 4: Dialogs and Menus

127

Next we will add shortcut keys. This is easy, click the menu item once to show its

properties. Change the ShortcutKeys, by marking the Ctrl check box and selecting the X

button for the Close menu item.

Repeat the same step for other menu items

Run the application and press Ctrl+O and you will see the Open File Dialog directly.

Chapter 4: Dialogs and Menus

128

Next try to make dividing lines between menu items. To do so, write the text – (the minus

sign) in the text part of the menu item. Notice that you can drag and change the position

of the menu items, so try to position those dividing lines to be something similar to the

above.

Chapter 4: Dialogs and Menus

129

Now we start defining the Copy, Cut, and Paste commands. So, add these menu items

under Edit, and write the code for each one of these:

1- for the copy

Clipboard.SetText(TextBox1.SelectedText)

2- for the cut

Clipboard.SetText(TextBox1.SelectedText)

TextBox1.SelectedText = ""

3- for the paste

TextBox1.SelectedText = Clipboard.GetText

Run the application and test the copy, cut, and paste.

Chapter 4: Dialogs and Menus

130

Now let us just add an About menu item, under the help menu item.

Add the following code in the About menu item.

MsgBox("This application is a test of making a notepad application out

of VB.NET", MsgBoxStyle.OkOnly, "About My Notepad")

The final code should look like this:

Public Class Form1

 Private Sub NewToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

NewToolStripMenuItem.Click

 TextBox1.Text = ""

 End Sub

Chapter 4: Dialogs and Menus

131

 Private Sub CloseToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

CloseToolStripMenuItem.Click

 End

 End Sub

 Private Sub SaveToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

SaveToolStripMenuItem.Click

 SaveFileDialog1.ShowDialog()

 If SaveFileDialog1.FileName = "" Then

 Exit Sub

 End If

 ' this part saves the file

 FileSystem.FileOpen(1, SaveFileDialog1.FileName,

OpenMode.Output)

 FileSystem.Print(1, TextBox1.Text)

 FileSystem.FileClose(1)

 End Sub

 Private Sub OpenToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

OpenToolStripMenuItem.Click

 OpenFileDialog1.ShowDialog()

 If OpenFileDialog1.FileName = "" Then

 Exit Sub

 End If

 ' this part loads the file

 Dim Tmp As String

 Tmp = ""

 FileSystem.FileOpen(1, OpenFileDialog1.FileName, OpenMode.Input)

 Do While Not FileSystem.EOF(1)

 Tmp = Tmp & FileSystem.LineInput(1)

 If Not FileSystem.EOF(1) Then

 Tmp = Tmp & Chr(13) & Chr(10)

 End If

 Loop

 FileSystem.FileClose(1)

 TextBox1.Text = Tmp

 End Sub

Chapter 4: Dialogs and Menus

132

 Private Sub FontToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

FontToolStripMenuItem.Click

 FontDialog1.ShowDialog()

 TextBox1.Font = FontDialog1.Font

 End Sub

 Private Sub CopyToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

CopyToolStripMenuItem.Click

 Clipboard.SetText(TextBox1.SelectedText)

 End Sub

 Private Sub CutToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

CutToolStripMenuItem.Click

 Clipboard.SetText(TextBox1.SelectedText)

 TextBox1.SelectedText = ""

 End Sub

 Private Sub PasteToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

PasteToolStripMenuItem.Click

 TextBox1.SelectedText = Clipboard.GetText

 End Sub

 Private Sub AboutToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles _

AboutToolStripMenuItem.Click

MsgBox("This application is a test of making a notepad application

out of VB.NET", MsgBoxStyle.OkOnly, _ "About My Notepad")

 End Sub

End Class

Notice that some lines are too long so I divided them to multiple lines. In visual basic,

writing a command on multiple line requires you to add the underscore symbol (_) to

tell the compiler that these two (or more) lines are actually one long line. Try to run the

application and test it.

Chapter 5: Understanding Variables

133

Chapter 5: Understanding variables

Chapter 5: Understanding Variables

134

Understanding variables

When a computer processes information or data, that data should be placed in its

memory first, then it performs different operations on that. You application as well

should process the information in memory. To accomplish that the you allocate memory

by defining variables. Simply, a variable is small piece of memory that allows the

program to process data within it.

To define a variable in VB.NET you use the following format:

 Dim MyInt As Integer

Where the Dim tells the computer that you are going to define a variable. Next you write

variable name (in this case it is MyInt) and finally the data type As Integer which

tells the computer you are going to perform integer operations on the data in that

variables.

So, in order to try out integer variables, create a simple windows application, and place a

button on your form, and modify its event so that it looks something similar to this:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim MyInt As Integer

 MyInt = 55 + 4

 MsgBox(MyInt)

 End Sub

Try this code out… you see that MyInt stores the result of the operation. You can place

any type of operation like +,-,*,/ and more… but for now let us try to create another

variable and use it with this one. Modify the code to be something like this:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim MyInt As Integer

 Dim A As Integer, B As Integer

 A = 10

 B = 30

 MyInt = A + B + 2

 MsgBox(MyInt)

Chapter 5: Understanding Variables

135

 End Sub

In this case we are using 3 variables (A,B,MyInt). We compute using the values inside

the A,B and store the result in MyInt. So basically any of the following statements is

valid:

 MyInt = 22 places value 22 in MyInt

 MyInt = A copies the value of A into MyInt (10)

 MyInt = B copies the value of B into MyInt (30)

 MyInt = A + B adds A,B and places the result in MyInt (40)

 MyInt = A – B subtructs B from A (-20)

 MyInt = A + A + B + 2 adds double value of A, value of B and 2 to the total

(52)

 MyInt = B*A-A multiply A by B then subtructs A (290)

 MyInt = A/2 divides A by 2 (10)

 MyInt = B/A divides B by A (3)

 MyInt = MyInt + 1 gets the value of MyInt (usually 0) and adds one to

that (total is 1)

and you can come up with any form of statement that helps you solve your problem.

Now we start understanding what is the data type. Each variable can be one data type.

The data type tells the computer what you are going to process in this variable. For

example Integer means you are working with whole numbers (like 30,40,55) and not

fractions. So if you try out:

 MyInt = 3.4

What you get is the value 3. That is because this data type can not store floating point

numbers. To solve this issue you should use Singe. To make things clear try to execute

the following code:

 Dim I As Integer

 I = 22 / 7

 MsgBox("the PI (int) :" & I)

Chapter 5: Understanding Variables

136

 Dim S As Single

 S = 22 / 7

 MsgBox("the PI (single) :" & S)

When you run this code, you will see that it give you 3 as the value of PI (the integer

case), then it gives you a value of 3.142857 for PI (the single case).

So why do you use integers and singles? Why not use single all the time? The answer is

performance and storage. The computer processes integer operations faster than that of

floating point numbers. And also some data types takes less storage than others. Because

of that if you are going to develop an application that performs lots integer operations it

makes sense to use integers to speed things up. In the end you select variable types

depending on the nature of your problem.

There are similar data types to Integer and Single. These are Long (to store integers) and

Double(to store floating point numbers). The difference between these and the previous

ones is that they can represent wider range of numbers. To demonstrate this try out the

following code:

 MsgBox("integer " & Integer.MaxValue)

 MsgBox("long " & Long.MaxValue)

 MsgBox("single " & Single.MaxValue)

 MsgBox("double " & Double.MaxValue)

The Integer.MaxValue gets the maximum value that an Integer can store. The same is

true for other data types. Of course better representation requires more memory and also

more processing time. Another example to demonstrate this is by calculating the value of

PI using Double and Single. Try out the following code:

 Dim I As Integer

 I = 22 / 7

 MsgBox("the PI (int) :" & I)

 Dim S As Single

 S = 22 / 7

 MsgBox("the PI (single) :" & S)

Chapter 5: Understanding Variables

137

 Dim D As Double

 D = 22 / 7

 MsgBox("the PI (double) :" & D)

I did not write the Long data type here, but you can try it. It gives the same result as that

of the integer case because Long data type can only store non-floating point values.

Another type of variables is the ones used to store complete statements, the String data

type.

 Dim Str1 As String

 Dim Str2 As String

 Str1 = "hello"

 Str2 = " my friend"

 MsgBox(Str1)

 MsgBox(Str2)

As you can see, this data type stores letters and symbols. And actually you can do a

number of operations on these. The simplest is to use the & operator to combine two

strings.

 Dim Str1 As String

 Dim Str2 As String

 Dim Str3 As String

 Str1 = "hello"

 Str2 = " my friend"

 Str3 = Str1 & Str2

 MsgBox(Str3)

You can see that Str3 now holds the complete statement “hello my friend”. More into

string data type will come with time, but here we are focused on the very basics of

variables.

Chapter 5: Understanding Variables

138

Another important data type is the Boolean data type. This one is used to evaluate logic

operations and it can only store True and False.

 Dim B1 As Boolean

 Dim B2 As Boolean

 Dim B3 As Boolean

 Dim B4 As Boolean

 B1 = True

 B2 = False

 B3 = 88 > 10

 B4 = "asmith" > "john"

 MsgBox("b1 is:" & B1)

 MsgBox("b2 is:" & B2)

 MsgBox("88 > 10 is: " & B3)

 MsgBox("asmith comes after john is:" & B4)

As you can see above B3 will check if 8 is greater than 10, and if so, it stores the value

True, otherwise it stores False. B4 here shows how you can compare two strings. It

checks to see if asmith comes alphabetically after john (which is the meaning of > sign

in string comparison), and obviously this is not correct, so the value of B4 is false.

Finally you have the Date data type which is used to store the time and date. You can test

it using the example below:

 Dim D1 As Date

 Dim D2 As Date

 Dim D3 As Date

 Dim D4 As Date

 D1 = Now

 D2 = Now.Date

 D3 = "8:10:22 AM"

 D4 = "2009-03-01"

 MsgBox(D1)

 MsgBox(D2)

 MsgBox(D3)

 MsgBox(D4)

The Now in the above example is used to get current system date and time. Now.Date is

used to get system date alone.

Chapter 6: Variables again, Goupboxes, and Listboxes

139

Chapter 6: Variables again, group box, list box

Chapter 6: Variables again, Goupboxes, and Listboxes

140

Variables again, group box, list box

This chapter is about using Group boxes, and little about variables and list boxes.

We will create a small application to find the area of squares, rectangles, and triangles. So

let us proceed by creating a new windows application project, name it “find area” and

save it.

Next set the form title to “Calculate Area”, I assume now you already know how to do

that. Next place a two labels, two text boxes, and a button on the form to look something

like this:

Now change the first label to be “length:”, second label to be “area:”, and the button text

to be “compute”. (to do that just click the control and change the text property”.

You should get something like this:

Chapter 6: Variables again, Goupboxes, and Listboxes

141

The user enters the length of the square in the first text box, and presses the compute

button, and he/she should get the area in the second text box. The second text box should

not be modified by the user. To do so, change the ReadOnly property of the second text

box to be “true”.

To write the code that gets the length, calculate the area, and display it, first check the

name of the text boxes because you will need these. Next double click the compute

button to write its event.

 Dim L As Double ' define the length variable

 Dim A As Double ' define the area variable

 L = TextBox1.Text ' get the length from the window.

 A = L * L ' calculate the area

 TextBox2.Text = A ' display the area in the second

 ' text box

Chapter 6: Variables again, Goupboxes, and Listboxes

142

Keep in mind that TextBox1, and TextBox2 are the names of the controls used to get the

data and display the result. And also remember you can change them if you want to. Now

run the application, enter a value of 10 and press compute.

Chang the length and press compute again and see the new results. Next we will do

something similar for the rectangle. Place three labels, three text boxes, and a command

button to be something like this:

Note that control names here are just the way I got them, you might get the order

differently, or you might want to rename the controls. Next double click the compute

button for the rectangle and write the following code.

 Dim W As Double ' define the width variable

 Dim h As Double ' define the height variable

 Dim A As Double ' define the area variable

TextBox1

TextBox2

TextBox4

TextBox5

TextBox3

Chapter 6: Variables again, Goupboxes, and Listboxes

143

 W = TextBox4.Text ' get the width

 h = TextBox5.Text ' get the height

 A = W * h ' compute the area

 TextBox3.Text = A ' dsplay the area

Now run the application, and test it.

The last part is the triangle. Repeat what you did with the rectangle and you should get

something similar to this:

And next set the code to compute the area to be:

 Dim base As Double ' define the base

 Dim Height As Double ' define the height

 Dim Area As Double ' define the area

 base = TextBox8.Text ' get the base

 Height = TextBox6.Text ' get the height

TextBox8

TextBox6

TextBox7

Chapter 6: Variables again, Goupboxes, and Listboxes

144

 Area = 0.5 * base * Height ' compute the area

 ' (1/2 x base x height)

 TextBox7.Text = Area ' display the result.

and check the code. It works. Now look at our window.

It does not look good actually and a little bit confusing because there are three compute

buttons, and the fields are mixed. The solution to this is to use GroupBox control. Now

search with the controls and add a GroupBox control on the form.

Next select the labels, textboxes and the button that is used for the square, and drag them

so that they fit inside the group box. Click then on the group box and set its text property

to be square. You should get something similar to this:

Chapter 6: Variables again, Goupboxes, and Listboxes

145

Notice that you might need to move the controls a little bit to make them fit. The group

box can be moved using the arrows symbol that appears when you click inside it.

Repeat the same thing for the rectangle and triangle to get something like this:

As you can see group box allows easy movement of controls on the form at design time

and also gives a better view of your application. Now we start working with list box. It is

used to view a list (which is no surprise). What we want to do here is displaying each

area being computed on the right side in such a way the previous results and

computations are displayed as well. To do so, add a group box to the right of your

window and put inside it a listbox control. You should have something like this:

Chapter 6: Variables again, Goupboxes, and Listboxes

146

The ListBox1 that appears here does not appear while the application is running. What

you see now is the name of the listbox control. Now we modify the code of the square so

that we add the area computed into the list box. Double click on the compute button of

the square, and modify its code to be like this:

 Dim L As Double ' define the length variable

 Dim A As Double ' define the area variable

 L = TextBox1.Text ' get the length from the window.

 A = 4 * L ' calculate the area

 TextBox2.Text = A ' display the area in the second text

 ' box

 ListBox1.Items.Add("the area of the square is:" & A)

 ' add the item

ListBox1 is used to communicate with the list, .Items is used to access the list of items

that it is displaying (which is at the beginning of execution is empty), .Add is used to add

the information or message into the Items of the list box. "the area of the square is:" & A

is evaluated first, and then the result is added into the list box items.

For the rectangle, modify its compute button to be something like this:

 Dim W As Double ' define the width variable

Chapter 6: Variables again, Goupboxes, and Listboxes

147

 Dim h As Double ' define the height variable

 Dim A As Double ' define the area variable

 W = TextBox4.Text ' get the width

 h = TextBox5.Text ' get the height

 A = W * h ' compute the area

 TextBox3.Text = A ' dsplay the area

 Dim S1 As String

 Dim S2 As String

 S1 = "The area of rectangle is:" ' the message

 S2 = S1 & A ' write the message then the area, and

 ' store the new message in S2

 ListBox1.Items.Add(S2) ' add the message to the list box

The same method to add item to the list box is called, but the way we generate the

message is a little bit different. Finally the rectangle code should be:

 Dim base As Double ' define the base

 Dim Height As Double ' define the height

 Dim Area As Double ' define the area

 base = TextBox8.Text ' get the base

 Height = TextBox6.Text ' get the height

 Area = 0.5 * base * Height ' compute the area (1/2 x base x height)

 TextBox7.Text = Area ' display the result.

 Dim Str As String

 Str = "The area of triangle is: " & Area ' generate the whole message

 ' directly

 ListBox1.Items.Add(Str) ' add the message to the list

Now you see also that the message is generated in a different way again. So you can

choose the way that best suits you. Now run the application and calculate few areas.

Chapter 6: Variables again, Goupboxes, and Listboxes

148

You should get something similar to this at run time. You can compute more than once

and see that the list box keeps adding new results. Next we see how to make a clear

button to clear the content on the form (for the listbox and the textboxes). Simply add a

button on the form, you should get something similar to this:

And add the following code in the clear button’s event:

 TextBox1.Text = "" ' clear all the text boxes

 TextBox2.Text = ""

 TextBox3.Text = ""

 TextBox4.Text = ""

 TextBox5.Text = ""

 TextBox6.Text = ""

 TextBox7.Text = ""

 TextBox8.Text = ""

 ListBox1.Items.Clear() ' clear the list box

Chapter 6: Variables again, Goupboxes, and Listboxes

149

As you can see text boxes are cleared by setting their text property to empty string “”,

while listboxes you just give a Clear command for them. Run the application, compute a

number of areas, and finally hit clear and see how the listbox and all textboxes are

cleared from the text.

So basically we worked just a little bit with variables, saw how to work with groupbox,

and saw the basic operation of listboxes. More details will be given into listboxes, but for

now we need to focus more on the programming aspect of the language.

Chapter 7: If Statement

150

Chapter 7: IF statement

Chapter 7: If Statement

151

IF statement

In VB.NET there are many forms for the IF statement. They all work by

evaluating some expression and if the expression is correct (evaluated to true) then the

code within the IF block is executed. Now check out the first simple form of IF statement

 If expression Then

 Statement

 Statement

…

 End If

The expression here is logical one. For example A>10, A<99, B>=A and so on. If the

expression is correct, the statements inside the IF block get executed. The statement

could be any valid VB.NET statement (even another IF statement). Now here is an

example of the IF statement that always get executed:

 If 10 < 100 Then

 ' display a friendly message

 MsgBox("You must see this message")

 End If

Since 10 is always smaller than 100 the condition always evaluates to true and you will

always see the message. Now change it to be:

 If 10 > 100 Then

 ' display a friendly message

 MsgBox("You must see this message")

 End If

The code within the block will never get executed. Now start a new project, put a button

on the form and go to its event handler and add the following code:

 Dim A As Integer

 Dim B As Integer

 A = InputBox("enter the value of A")

 B = InputBox("enter the value of B")

Chapter 7: If Statement

152

 If A > B Then

 MsgBox("A is greater than B")

 End If

 If A < B Then

 MsgBox("A is smaller than B")

 End If

 If A = B Then

 MsgBox("A is equal to B")

 End If

The InputBox is a function that reads a value from the keyboard. So the program reads

two numbers and check their status. Run the program and try different values for A and B

to see how it works. Also debug the program (by pressing F10 to execute one statement

at a time) and see how the code get executed internally.

Another variation of the IF statement is the IF … ELSE. It has he following format:

 If expression Then

 Statement

 Statement

…

 Else

 Statement

 Statement

…

 End If

The statements in black get executed when the expression is true, while the statements in

red are ignored. However if the expression is evaluated to false then the statements in

black are ignored while the statements in red are executed. To see how it works consider

the following example:

 If 10 > 100 Then

 ' this message is never displayed

 MsgBox("10 is greater than 100")

 Else

 ' this message is always displayed

Chapter 7: If Statement

153

 MsgBox("10 is smaller than 100, what a surprise!!!")

 End If

The last form of the IF statement is the IF…ELSEIF… statement. Think of it as a

multiple if statements combined into one. The form is as follows:

 If expression1 Then

 Statement

 Statement

…

 ElseIf expression2 Then

 Statement

 Statement

…

 ElseIf expression3 Then

 Statement

 Statement

…

 Else

 Statement

 Statement

…

 End If

In this case if expression1 is evaluated to true, then its statements are executed and then

the rest of the IF statement is ignored. If not, the expression2 is evaluated and its

corresponding statements are executed and the rest of the checks are ignored… so check

out the example below to have an idea about how it works:

 If MyAge < 13 Then

 ' you must be a child

 MsgBox("Child")

 ElseIf MyAge < 20 Then

 ' you are a teenager

 MsgBox("Hello Teenager")

 ElseIf MyAge < 35 Then

 ' Your age is acceptable

 MsgBox("Hi there young man")

 Else

 ' the person is old

Chapter 7: If Statement

154

 MsgBox("Hello there old man")

 End If

So basically this is how the if statement works. We will create a simple Number Guessing

Game and see how the IF statement helps us to do it. So basically start a new project, and

Create a form with two buttons, a list box and a label as shown below:

Now for the Start button’s event write the following code:

 Dim SecretNumber As Integer

 Dim Attempts As Integer

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Randomize()

 SecretNumber = Int(Rnd() * 100)

 Attempts = 0

 ListBox1.Items.Clear()

 Label1.Text = "Attempts:" & Attempts.ToString

 End Sub

The variables SecretNumber and Attempts are declared outside the subroutine so that

their value will persist during program execution. The statements

 Randomize()

 SecretNumber = Int(Rnd() * 100)

Chapter 7: If Statement

155

Are used to generate a random number. The numbers are usually generated using some

pattern. Each execution the same pattern of numbers appears. The first statement

Randomize()makes sure that does not happen. The Rnd()function is used to generate a

random number between 0 and 1. Multiply that by 100 you get a value between 0 and

100.

 Attempts = 0

 ListBox1.Items.Clear()

 Label1.Text = "Attempts:" & Attempts.ToString

These statements resets the number of guessing attempts the play has made, and clears

the listbox from previous attempts.

The code for the second button is:

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Dim MyNumber As Integer

 Dim Tmp As String

 Tmp = InputBox("Enter a number between 1 and 100", "Guessing

game")

 If IsNumeric(Tmp) Then

 MyNumber = Tmp

 Else

 MsgBox("you should enter a number")

 Exit Sub

 End If

 If MyNumber = SecretNumber Then

 MsgBox("You Guessed the correct number", MsgBoxStyle.OkOnly)

 ElseIf MyNumber > SecretNumber Then

 ListBox1.Items.Add("you should enter a lower number")

 MsgBox("your guess is wrong")

 Else

 ListBox1.Items.Add("you should enter a higher number")

 MsgBox("your guess is wrong")

 End If

 Attempts = Attempts + 1

 Label1.Text = "Attempts:" & Attempts.ToString

Chapter 7: If Statement

156

 End Sub

The code is explained as follows:

 Dim MyNumber As Integer

 Dim Tmp As String

 Tmp = InputBox("Enter a number between 1 and 100", "Guessing game")

Here we define a number variable to store our guess in. We also need a string variable.

This one will hold the value enter by the user so that we can check if it is a number of not

(because the user can enter text value instead of a number).

 If IsNumeric(Tmp) Then

 MyNumber = Tmp

 Else

 MsgBox("you should enter a number")

 Exit Sub

 End If

The IsNumeric is a function that is used to check if a string represent a number or not. So

this part will assign the number inside Tmp into MyNumber if it is a proper number

representation. Otherwise you get a message telling you about the error and the execution

to the subroutine terminates because of the Exit Sub statement. Next:

 If MyNumber = SecretNumber Then

 MsgBox("You Guessed the correct number", MsgBoxStyle.OkOnly)

 ElseIf MyNumber > SecretNumber Then

 ListBox1.Items.Add("you should enter a lower number")

 MsgBox("your guess is wrong")

 Else

 ListBox1.Items.Add("you should enter a higher number")

 MsgBox("your guess is wrong")

 End If

This is the important part were we check the number against what the computer

generated. If the numbers are a match then we display a message telling the user about

Chapter 7: If Statement

157

his guess. If not the user get a wrong guess message and the computer tells if you should

guess a higher or lower number. Finally:

 Attempts = Attempts + 1

 Label1.Text = "Attempts:" & Attempts.ToString

Will only update the number of attempts.

So this is a very simple introduction to IF statements, and we will be using these more

often in later chapters.

Chapter 8: For statement

158

Chapter 8: FOR statement

Chapter 8: For statement

159

FOR statement

Almost every language has some kind of looping statement (in case you don’t

know what that does, it allows the execution of a number of statements several times). In

VB.NET there are a number of looping statements, these are REPEAT, DO and FOR. We

will talk about the easiest of them all which is the FOR loop. The FOR loop is written

like this:

 For variable = Min To Max Step JumpStep

 Statement

 Statement

…

 Next

The code will execute the statements between the For and Next parts by setting the

variable to Min, increasing it by one every time until it reaches Max. To make things

clear consider this example

 For A = 1 To 10

 MsgBox("The value of A is:" & A)

 Next

The result of executing the code above is ten message boxes telling you the value of A

every time.

Now let us consider another example. Here you have a form with a textbox and a

ComboBox. You select font size from the combo box and the text size changes

accordingly.

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles MyBase.Load

 ' this part fills the combobox with the sizes of font that we

 ' can pick from

 Dim I As Double

 For I = 12 To 70

 ComboBox1.Items.Add(I)

 Next

 End Sub

Chapter 8: For statement

160

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As

 System.Object, ByVal e As System.EventArgs) Handles

 ComboBox1.SelectedIndexChanged

 ' this part changes font size

 Dim F As Font

 F = New Font("COURIER NEW", ComboBox1.Text)

 TextBox1.Font = F

 End Sub

You notice two things in the example, first the loop does not start from 1, it starts from

12, you can start from any value you like, for example start from 283732, -12, 0, 88888,

etc. Second the data type of the variable I is double. You can use Single, Double,

Integers, Long… You are not restricted here.

If we want to display the numbers between 5 and 50 by adding 5 to the previous in each

step then:

 Dim Counter As Integer

 For Counter = 5 To 50 Step 5

 MsgBox(Counter)

 Next

Assume we need the values 0, 0.1, 0.2, 0.3, 0.4, 0.5… 1.0. This can be done in two ways:

 Dim Counter As Integer

 Dim V As Double

 For Counter = 0 To 10

 V = Counter / 10.0

 MsgBox(V)

 Next

This method requires extra variable, and does not take advantage of the for loop. A better

way is to use the STEP keyword with double or single data type to make it easy for us:

 Dim Counter As Double

 For Counter = 0 To 1 Step 0.1

 MsgBox(Counter)

 Next

Chapter 8: For statement

161

One last important thing to notice is that the initial value of the variable should always be

smaller than or equal to the value after the To keyword, otherwise the for loop does not

get executed and it is skipped. For example:

 For Counter = 10 To 1

 MsgBox(Counter)

 Next

Will never give you message box at all. To fix this and make the count down work, just

put a negative step value:

 For Counter = 10 To 1 Step -1

 MsgBox(Counter)

 Next

These are most of the details needed to work with the For loop. The next example is a

simple one showing how to use the FOR loop to identify Prime number.

Prime numbers are numbers that can only be divided by themselves and 1 with

remainder=0. So this means if we have number 9212, we should check the remainder of

dividing this number over all the values from 9212 to 2 and it should never give a zero if

it is a prime. Without for loop this is very hard to compute. The code to calculate the

prime number is:

 Dim MyNumber As Integer

 Dim RemainderIsZeroFlag As Boolean

 Dim I As Integer

 ' read a number from the screen

 MyNumber = InputBox("Enter a number")

 ' this is a flag to tell us when the condition

 ' of prime number is not satisfied

 RemainderIsZeroFlag = False

 ' start checking all the numbers

 For I = 2 To MyNumber - 1

 ' if the condition is not satisfied

Chapter 8: For statement

162

 If MyNumber Mod I = 0 Then

 ' mark that the remainder is not zero

 RemainderIsZeroFlag = True

 End If

 Next

 ' if there was any remainder then tell the user

 ' that the number is not prime, else it is.

 If RemainderIsZeroFlag Then

 MsgBox("The number is not prime")

 Else

 MsgBox("The number is prime")

 End If

Next chapter we will start working with arrays and collections, and things will get more

exciting.

Chapter 9: Arrays

163

Chapter 9: Arrays

Chapter 9: Arrays

164

Arrays

In many cases you need to perform processing on huge amount of data. For

example you may want to find an average of 7000 values in a file, or reading unknown

number of people names into your application and recalling them back. In such case it is

inconvenient to define all these variables separately. Instead you define an array which

holds all the records.

Think of an array as a big variable that you can get and store values in it by specifying

position. For example, below is an array of integer, let us call it A:

The cells in green are just shown here to show you the position of the variable, while the

cells in purple show you the content of each variable. As you can see here this array can

store 8 variables (starting from 0 and ending at 7). The first location is always 0, some

people might find it confusing. You can ignore the first location and avoid any confusion,

but you need to know where does the indexing of the array start.

In VB.Net to create an array like the above, you write the following:

 Dim A(7) As Integer

This statement generates an array that can store integers. The array has 8 elements

(starting with index 0, and ending with 7). When the statement above is executed, you get

the following result in memory:

To fill the array, you use something like below:

' fill element in locations 0, 1, 2, and 7 (no need to fill in order)

 A(1) = 77

Element 0 in A

Element 1 in A

Element 2 in A

Element 3 in A

Element 4 in A

Element 5 in A

Element 6 in A

Element 7 in A

0

0

0

0

0

0

0

0

Element 0 in A

Element 1 in A

Element 2 in A

Element 3 in A

Element 4 in A

Element 5 in A

Element 6 in A

Element 7 in A

33

123

3

-5

19

77

1212

0

Chapter 9: Arrays

165

 A(2) = 14

 A(0) = -1

 A(7) = 19

' fill element in location 3 (can use expression to find the location)

 A(2 + 1) = 321

' fill element in location 5 (can use variable to find the location)

 Dim J As Integer

 J = 5

 A(J) = -1000

In order to understand how this works, check out the graph below:

Now, let us fill the array with numbers from 0 to 7:

 ' define array first

 Dim MyNumbers(7) As Double

 ' define a counter

 Dim I As Integer

 ' fill the array

 For I = 0 To 7

 MyNumbers(I) = I

 Next

If we want to fill the values from the keyboard (let us say, we want the user to enter 10

names):

 ' define the array

 Dim My10Names(9) As String

A(1) = 77

 A(2) = 14

 A(0) = -1

 A(7) = 19

 A(2+1) = 321

 A(J) = -1000 (J is 5)

Element 0 in A

Element 1 in A

Element 2 in A

Element 3 in A

Element 4 in A

Element 5 in A

Element 6 in A

Element 7 in A

-1

77

14

321

0

-1000

0

19

Chapter 9: Arrays

166

 ' define a counter

 Dim C As Integer

 ' fill the array

 For C = 0 To 9

 My10Names(C) = InputBox("Enter the number number " & C)

 Next

To get the values out of the array, you use the same format used above. For example the

following code shows the content of an array in a list box:

 ' display the result

 ListBox1.Items.Clear()

 For I = 0 To 7

 ListBox1.Items.Add(My10Names(I))

 Next

To test what we have learned, you can find a simple application on the web site that

shows you how to use arrays, by filling them, finding max and min values, and finding

average. You need to add a DataGridView, and 4 CommandButtons to your form. The

code is:

Public Class Form1

 ' we define two arrays one to store names, another to store marks

 Dim Names(9) As String

 Dim Marks(9) As Integer

 ' we define a variable to store how many element of the array we

 ' used

 Dim StCount As Integer = 0

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 ' read the name and mark and put them in the next empty slot

 Names(StCount) = InputBox("Enter the name of student")

 Marks(StCount) = InputBox("Enter the mark")

 ' the new name and mark should be displayed on the data grid

Chapter 9: Arrays

167

 DataGridView1.Rows.Add(Names(StCount), Marks(StCount))

 ' move the counter to the next empty slot

 StCount = StCount + 1

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 ' find the maximum mark

 Dim I As Integer ' used for counting

 Dim MaxPos As Integer ' used to remember the index of

 ' maximum mark

 MaxPos = 0 ' assume first mark is the maximum

 For I = 1 To StCount - 1 ' loop over all other slots

' is there an element with a mark greater than the current maximum?

 If Marks(I) > Marks(MaxPos) Then

 MaxPos = I ' we found a new max,

 ' update our maximum

 End If

 Next

 MsgBox("student " & Names(MaxPos) & " has the maximum mark")

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

 ' find minimum

 ' it is identical to the previous, except for the condition

 Dim I As Integer

 Dim MinPos As Integer

 MinPos = 0

 For I = 1 To StCount - 1

 If Marks(I) < Marks(MinPos) Then

 MinPos = I

 End If

 Next

 MsgBox("student " & Names(MinPos) & " has the minimum mark")

 End Sub

Chapter 9: Arrays

168

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button4.Click

 Dim I As Integer ' I is counter

 Dim AVG As Double ' Used to store the sum and finding

 ' the average

 AVG = 0 ' The avg is zero

 For I = 0 To StCount - 1 ' Loop over all elements in the

 ' array

 AVG += Marks(I) ' Add each element to the some of

 ' the previous ones

 Next

 AVG = AVG / StCount ' divide the total by number of

 ' elements to get the average

 MsgBox("the average is:" & AVG)

 End Sub

End Class

Next chapter we will start working with collections, and see how they are simpler than

arrays.

Chapter 10: Collections

169

Chapter 10: Collections

Chapter 10: Collections

170

Collections

Last time we spoke about arrays, and saw how to work with them. Today we

check out something similar and easier to use, and that is collections.

Collections are very similar to arrays. They are used to store a number of values (or

variables), so that you can process them all.

There are a number of differences between arrays and collections. First difference is that

the indexing for arrays starts with zero, while for a collection it starts with 1. To

understand this, consider the image below:

Now the statement V = A(3) will place the value 55 in V because the indexing start at

zero in arrays. However the similar statement V = C(3) will place 43 instead because

collection indexing is different. The same applies for the second statement.

Another important difference is the data type. All Array elements has the same data type.

So if you have an array:

Chapter 10: Collections

171

Dim A(0 To 9) As Integer

then A(0), A(1), A(2)… A(9) are all Integers. Collections on the other hand do not

require this. You can store integers, reals, strings, bytes,… etc. in the same collection.

This can be illustrated below:

Usually you will use the same data type for all elements of the collection; however you

still have the option to use different data types whenever you need to.

Another difference between arrays and collections is that collections can add elements

and remove elements directly and change in size without any need for some kind of

processing, while arrays are fixed in size, and you cannot insert values at specific

locations at random.

Chapter 10: Collections

172

Finally array elements can be updated and overwritten, while collections are not. To

make this clear check out this:

In this example if you write C(3) = 55 you get an error, that is because collection does not

allow you to update or overwrite the content of an element. However there is a way to

overcome this. We will discuss this later.

Now let us see how to define a collection. There are two ways to define a collection:

 Dim C As New Collection

In this example you create a collection object that is ready to be used. So you can add,

remove elements, get the number of items, or do whatever you want with the collection

directly. Another way is:

 Dim C As Collection

here C is not ready yet to be used. It does not point to a collection yet. You can never use

it. To be able to use it later on in the code you should write:

 C = New Collection

This will allow you to use the collection without any problem. The first method of

defining a collection is the one you will probably use the most.

Chapter 10: Collections

173

Now in order to add elements to the collection you use the add method.

When you write C.Add the compiler shows you the parameters that you should provide.

The ones in the square brackets are optional. The parameters are:

 Item: is the value you want to store

 Key: you can provide a text value to quickly access the elements of collection

instead of providing numbers to access them. For example the code below will

store the value 40 in V:

 Dim C As New Collection

 C.Add(33, "Smith")

 C.Add(40, "Michel")

 C.Add(77, "John")

 Dim V As String

 V = C("Michel")

 Before: is the index of the item you want the new element to be inserted before.

 After: is the index of the item you want the new element to be inserted after.

Next is removing elements. This simple, you just provide the index of the element you

want to remove:

 C.Remove(3)

This removes the 3
rd

 element from the collection.

Also getting the number of elements is as easy. You use the count function.

 I = C.Count

Finally we describe how to simulate the functionality replacing or updating an item in the

array using collection.

Chapter 10: Collections

174

If we write :

 C.Add(N, , , 7)

 C.Remove(7)

This will have exactly the same effect as:

 A(6) = N

So this is a basic introduction about collections. Next is a simple application

demonstrating the use of collections. Create a windows form, and make it similar to what

you see below:

Next write the code below:

Public Class Form1

 Dim MyCollection As New Collection

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 ' this method clears all the elements in the collection

 MyCollection.Clear()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

Chapter 10: Collections

175

 ' read a name

 Dim Name As String

 Name = InputBox("enter a name")

 ' add the name into the list

 MyCollection.Add(Name)

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button3.Click

 MsgBox("the number of items is:" & MyCollection.Count)

 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button4.Click

 ' clear old content

 ListBox1.Items.Clear()

 ' insert the items into the list box

 Dim I As Integer

 For I = 1 To MyCollection.Count

 ListBox1.Items.Add(MyCollection(I))

 Next

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button5.Click

 ' get element position

 Dim I As Integer

 I = InputBox("enter the element number you want to remove:")

 MyCollection.Remove(I)

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button6.Click

 ' get element position

 Dim I As Integer

 Dim N As String

 I = InputBox("enter the element number:")

 N = InputBox("enter the new name:")

 MyCollection.Add(N, , , I)

 MyCollection.Remove(I)

Chapter 10: Collections

176

 End Sub

End Class

The code is very simple and at your level you should understand it very easily. If you

have any problem with it just send me notes about it. Next chapter we will start working

with functions, and see how it makes coding much easier for us.

Chapter 11: Functions

177

Chapter 11: Functions

Chapter 11: Functions

178

Functions

Up to this point, when you want to write an application you would simply write

all your statements into one single block and try to solve all the problems in that simple

block. However there is a better approach to write applications by dividing the

application into a number of blocks that form together one application. These what

functions are. Think about functions as small or mini-programs that each is designed to

address a simple problem.

Functions make your applications easier to write and easier to understand. Now let us

consider this example: you need to find the factorial for three variables, A,B and C. (The

factorial of 4 is 4x3x2x1, and factorial of 7 is 7x6x5x4x3x2x1).

Usually to solve this issue you write something like:

 A = 10

 B = 5

 C = 4

 FA = 1

 For I = 1 To A

 FA = FA * I

 Next

 FB = 1

 For I = 1 To B

 FB = FB * I

 Next

 FC = 1

 For I = 1 To C

 FC = FC * I

Chapter 11: Functions

179

 Next

So if you have for example 30 variables, you might need to rewrite the code 30 times

(assuming you are not using arrays). However if you think about this in a different way,

that is: Could I have a statement that get me the factorial? Then the code would be

something like:

 A = 10

 B = 5

 C = 4

 FA = Factorial(A)

 FB = Factorial(B)

 FC = Factorial(C)

Which is very easy to write and understand. All you need is to tell the computer what

Factorial really is:

 Function Factorial(ByVal N As Integer) As Double

 Dim F As Double ' the factorial total

 Dim I As Integer ' the counter

 F = 1 ' the initial value of F

 For I = 1 To N ' this loop to calculate the factorial

 F = F * I

 Next

 Return F ' return the result

 End Function

Now no matter how many times you need to calculate the factorial, you can just call it

whenever you need. You don’t have to worry about the loop or initializing F or anything

else. You do it only once and you can use it anywhere.

Chapter 11: Functions

180

Consider the above figure. It shows how the program behaves when it encounters a

function call. The program executes normally, until it reaches a function call. At that time

it will transfer its execution to function A. It will execute the function, get the result, and

return back to the main program. The execution continues from the function call, and

again, when there is another function call the process in repeated.

The functions you use could be built in functions, which means they are already written

and available in the compiler, or user defined functions which are the ones you write.

Built in functions are used to do general operations needed in most programs, and to

make life easier for programmers. Examples of these are the InputBox function which

shows a small window to read values from the display.

Chapter 11: Functions

181

Other examples are math functions like Math.Pow - which finds the power of a number -

and Math.Abs - which finds the absolute value of a number - and string functions like

UCase and LCase.

As for user defined functions, you can define a function as follows:

 ' the factorial function

 Function Factorial(ByVal N As Integer) As Double

 Dim F As Double ' the factorial total

 Dim I As Integer ' the counter

 F = 1 ' the initial value of F

 For I = 1 To N ' this loop is used to calculate the

 ' factorial

 F = F * I

 Next

 Return F ' return the result

 End Function

Function, End Function parts define where the code of the function starts and when it

ends.

Factorial is the name of the function. You can choose any name however you might want

to choose a meaningful name to remind you what this function does.

ByVal N As Integer is the parameter of the function. For now ignore the ByVal part. The

parameter is a value passed from your program to the function so that the function could

work on it. You define all the parameters between the brackets.

As Double which comes after the brackets tells the compiler what data type this function

returns. When a function finish its processing it should return the result in the specified

data type.

Return is used to tell the compiler what is the result of executing this function.

The following is an example of a function:

 ' the sum function

 Function Sum(ByVal V1 As Integer, ByVal V2 As Integer, ByVal V3 As

Integer) As Integer

 Return V1 + V2 + V3 ' calculate the sum and return the result in

Chapter 11: Functions

182

 ' one single step

 End Function

Now let us check the application included with the tutorial and see how it works:

It allows you to compute the factorial of a number, find the sum of 3 numbers, read and

find max value or average of an array.

The factorial function is:

 ' the factorial function

 Function Factorial(ByVal N As Integer) As Double

 Dim F As Double ' the factorial total

 Dim I As Integer ' the counter

 F = 1 ' the initial value of F

 For I = 1 To N ' this loop is used to calculate the

factorial

 F = F * I

 Next

 Return F ' return the result

 End Function

and the code of the factorial button is:

 ' read the number from screen

 Dim MyNumb As Integer

 Dim R As Double

 MyNumb = InputBox("What number would you like to compute the

factorial to?")

 R = Factorial(MyNumb)

 MsgBox("the result is:" & R)

Chapter 11: Functions

183

Check out how to call the function, you use its name and pass the parameter value. You

can even call the function in the following ways:

 R = Factorial(MyNumb + 2)

 R = Factorial(6)

 R = Factorial(77/2)

 R = Factorial(A - B)

and the value of the expression between the brackets is evaluated and passed to the

function and placed in the variable N.

The rest of the code is straight forward. However I would like to highlight the functions

that process functions:

 ' the max value in an array

 Function GetMax(ByVal A() As Integer) As Integer

 Dim I As Integer

 Dim Max As Integer

 Max = A(0) ' assume the max value is the

 ' first value

 For I = 1 To A.Length - 1 ' loop over all other values in

 ' an array

 If Max < A(I) Then ' if we find another value

 ' larger than max then

 Max = A(I) ' update max

 End If

 Next

 Return Max ' return the result

 End Function

 ' the avg value of an array

 Function GetAVG(ByVal A() As Integer) As Integer

 Dim I As Integer

 Dim sum As Integer

 sum = 0 ' assume the sum value is 0

 For I = 0 To A.Length - 1 ' loop over all other values in

 ' an array

 sum = sum + A(I)

Chapter 11: Functions

184

 Next

 Return sum / A.Length ' return the result

 End Function

 ' read array

 Function ReadArray() As Integer()

 ' the counter

 Dim I As Integer

 ' the number of elements

 Dim N As Integer

 ' read the number of elements from the display

 N = InputBox("how many elements in the array")

 ' create the array

 Dim A(0 To N - 1) As Integer

 ' read the elements of the array

 For I = 0 To N - 1

 A(I) = InputBox("enter the element:" & I.ToString)

 Next

 ' return the result

 Return A

 End Function

When you pass array to a function you use brackets () to tell the function that it is going

to receive the array. In ReadArray() When the function returns an array, you add brackets

after the return data type.

Next chapter we discuss functions more.

Chapter 12: ByVal & ByRef

185

Chapter 12: ByVal & ByRef

Chapter 12: ByVal & ByRef

186

ByVal & ByRef

One of the useful properties of functions is that it allows you to propagate changes

in a parameter back to its original variable. For example consider this simple functions:

 Function TestByVal(ByVal N As Integer) As Integer

 N = 0

 Return N

 End Function

 Function TestByRef(ByRef N As Integer) As Integer

 N = 0

 Return N

 End Function

Now if you call the functions like this:

 Dim K1 As Integer = 100

 TestByVal(K1)

 MsgBox(K1)

 Dim K2 As Integer = 100

 TestByRef(K2)

 MsgBox(K2)

The first MSGBOX will display the value 100, while the second will show the value

zero. This can be explained as follows:

When the computer sees the ByVal keyword it will create an independent copy of

the variable you are passing to the function and work on it. In our example TestByVal,

the function sets the variable N to zero. Since it is passed by value this won’t affect the

orginal parameter K1.

However when you use ByRef keyword the computer will create a copy of the

variable that is linked to the original parameter. In other words the variable N in the

example is another name for the variable K2, so when you change N in the second

Chapter 12: ByVal & ByRef

187

function, K2 changes as well. So this is why you get the value zero from the second

MSGBOX.

Now let us create a useful example to swap two numbers:

 ' swap function

 Function Swap(ByRef V1 As Integer, ByRef V2 As Integer)

 Dim Tmp As Integer

 Tmp = V1

 V1 = V2

 V2 = Tmp

 End Function

Here you are passing two numbers into the function and the function swaps them. Now to

call the function you can try something like this:

 Dim N1 As Integer

 Dim N2 As Integer

 N1 = InputBox("Enter N1")

 N2 = InputBox("Enter N2")

 Swap(N1, N2)

 MsgBox("N1:" & N1)

 MsgBox("N2:" & N2)

So whenever you call the function the numbers are changed. Try to modify the code of

the function to have some errors, for example let it be like this:

 ' swap function modified

 Function Swap(ByVal V1 As Integer, ByVal V2 As Integer)

 Dim Tmp As Integer

 Tmp = V1

 V1 = V2

 V2 = Tmp

 End Function

Try the same code and you will see it will not work as we clarified before. Also try

modifying the function to be like this:

Chapter 12: ByVal & ByRef

188

 ' swap function modified

 Function Swap(ByVal V1 As Integer, ByRef V2 As Integer)

 Dim Tmp As Integer

 Tmp = V1

 V1 = V2

 V2 = Tmp

 End Function

Here you are going to get strange result, one of the values will be changed, while the

other not simply because one of the parameters if by reference and the other is by value.

So just in case you are getting unexpected results and your function code appear to be

correct, just make sure that the ByVal and ByRef keywords are used correctly.

Next chapter deals with subroutine, and try to create a useful sort program.

Chapter 13: Subroutines

189

Chapter 13: Subroutines

Chapter 13: Subroutines

190

Subroutines

In vb.net you can write other type of coding blocks called subroutines.

Subroutines are almost exactly similar to function except they don’t return a value. In this

chapter we are going to create a simple application that stores person’s name and

telephone number and allows you to search the names. If you did not read the chapter

about working with functions, then you won’t be able to understand this one.

Open a new project, and then create the interface similar to the below:

You just add a DataGridView control and a menustrip. Set fields for the DataGridView

control.

Next go to the code window and write the following:

 ' define the main variables

 Dim Names As New Collection

 Dim Tels As New Collection

These two collections are going to store the names and telephone numbers, next write:

 ' add new person

 Sub AddContact(ByVal CName As String, ByVal CTEL As String)

 Names.Add(CName)

 Tels.Add(CTEL)

 End Sub

Chapter 13: Subroutines

191

This one is a subroutine that will add the name and telephone numbers to the collections.

As you can see there is no return value, and the definition is very similar to the functions.

The next subroutine is used to view the content of collections in the DataGridView

control.

 ' display the names in the grid

 Sub ViewContacts(ByVal DGV As DataGridView)

 DGV.Rows.Clear()

 Dim I As Integer

 For I = 1 To Names.Count

 DGV.Rows.Add(Names(I), Tels(I))

 Next

 End Sub

Now, we need to add the code for the “Add New” person menu item, go to the user

interface, and double click the Add New menu item, and write the code:

 ' the handler for the add new contact command

 Private Sub AddNewToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddNewToolStripMenuItem.Click

 Dim N As String

 Dim T As String

 N = InputBox("Enter the name of the contact:")

 If N = "" Then

 Exit Sub

 End If

 T = InputBox("Enter the tel number:")

 If T = "" Then

 Exit Sub

 End If

 AddContact(N, T)

 ViewContacts(DataGridView1)

 End Sub

If you check the definition of the block:

Chapter 13: Subroutines

192

 Private Sub AddNewToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddNewToolStripMenuItem.Click

you realize that the event handler is actually a subroutine. So we have been using

subroutines all the time. Next create a search function and the event handler for the

search menu item:

 ' the search function

 Function GetTelForName(ByVal Name As String) As String

 Dim I As Integer

 For I = 1 To Names.Count

 If Names(I) = Name Then

 Return Tels(I)

 End If

 Next

 Return ""

 End Function

 Private Sub SearchToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

SearchToolStripMenuItem.Click

 Dim N As String

 Dim T As String

 N = InputBox("Enter the name you are searching for:")

 If N = "" Then

 Exit Sub

 End If

 T = GetTelForName(N)

 If T = "" Then

 MsgBox("Name not found")

 Else

 MsgBox("the tel number is:" & T)

 End If

 End Sub

Finally run the application, try to add some names, and perform a search. So this is a

quick example about using subroutines.

Chapter 14: Do Loop

193

Chapter 14: Do Loop

Chapter 14: Do Loop

194

Do Loop

In VB.NET, you can use For loop which we saw how to use in one of the

previous tutorials. Another type of loop is the Do loop. The format of this loop can be

one of the following:

Do

Statement...

Statement...

…

Loop While Condition

Or

Do

Statement...

Statement...

…

Loop Until Condition

Or

Do While Condition

Statement...

Statement...

…

Loop

Or

Do Until Condition

Statement...

Statement...

…

Loop

The location of the condition tells when the checking of exiting or staying in the loop

should be performed. For example:

Chapter 14: Do Loop

195

Do While K<10

Statement...

Statement...

…

Loop

Here the check is performed every time before the loop is executed. It is possible in this

example for the loop to never get executed. However if you write it like this:

Do

Statement...

Statement...

…

Loop While K<10

The check is performed after the loop is executed. So here the loop is executed at least

once.

Now let us test the Do Loop with an example:

Create a form similar to the above picture, and then for the first button write the code:

Dim I As Integer

ListBox1.Items.Clear()

For I = 1 To 10

ListBox1.Items.Add(I)

Next

Chapter 14: Do Loop

196

This is the standard For loop, Now we will create a similar loop using the Do loop. Add

the following code for the second button.

Dim I As Integer

I = 1

ListBox1.Items.Clear()

Do

ListBox1.Items.Add(I)

I = I + 1

Loop While (I < 11)

Run the application and see how both loops give the same result. The thing about the Do

loop here is that you much initialize the counter (I) yourself, and increase its value, and

check when you should stop the loop. This is something you don’t have to do with the

For loop.

The Do loop is not used to replace the For loop, but it is used when you don’t know how

many times you need to execute the code. For example, assume you want to find the

square root for an unknown number of values, and you want to stop when you enter a

negative number. The way you do it is as follows:

Dim I As Double

Do

I = InputBox("Enter a +ve number:")

If I >= 0 Then MsgBox("the root of your number is:" &

Math.Sqrt(I))

Loop While I > 0

Here you can stop after entering one value, or after entering … say 500 +ve numbers.

Try to add the code to the third button in the form above and check it out. The full code

for the form should be similar to the following:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)Handles Button1.Click

Dim I As Integer

Chapter 14: Do Loop

197

ListBox1.Items.Clear()

For I = 1 To 10

ListBox1.Items.Add(I)

Next

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)Handles Button2.Click

Dim I As Integer

I = 1

ListBox1.Items.Clear()

Do

ListBox1.Items.Add(I)

I = I + 1

Loop While (I < 11)

End Sub

Private Sub Button3_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

Handles Button3.Click

Dim I As Double

Do

I = InputBox("Enter a +ve number:")

If I >= 0 Then MsgBox("the root of your number is:" &

Math.Sqrt(I))

Loop While I > 0

End Sub

End Class

Now let us try another example with the Do Loop, this time we use it to perform bubble

sort. Create a form similar to the one below:

Chapter 14: Do Loop

198

Next write down the code of the form to be as follows:

Public Class Form1

Dim A() As Integer

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

Handles Button1.Click

Dim Count As Integer

Count = InputBox("enter the number of values:")

ReDim A(0 To Count - 1)

Dim I As Integer

For I = 0 To Count - 1

A(I) = InputBox("Enter the value " & I.ToString)

Next

ViewArray(A, ListBox1)

End Sub

Public Sub ViewArray(ByVal Ar() As Integer, ByVal L As ListBox)

L.Items.Clear()

Dim I As Integer

For I = 0 To Ar.Length - 1

L.Items.Add(Ar(I))

Next

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

Handles Button2.Click

' sort

Dim I As Integer

Dim J As Integer

Dim Flag As Boolean

Do

Flag = False

For I = 0 To A.Length - 2

If A(I) > A(I + 1) Then

Flag = True

J = A(I)

A(I) = A(I + 1)

A(I + 1) = J

End If

Next

Loop Until Flag = False

ViewArray(A, ListBox1)

Chapter 14: Do Loop

199

End Sub

End Class

Check out the code for the sort operation:

' sort

Dim I As Integer

Dim J As Integer

Dim Flag As Boolean

Do

Flag = False

For I = 0 To A.Length - 2

If A(I) > A(I + 1) Then

Flag = True

J = A(I)

A(I) = A(I + 1)

A(I + 1) = J

End If

Next

Loop Until Flag = False

The Flag is used to tell when any two values in the array are exchanged, which tells the

computer to perform another loop on array elements. Notice that this bubble sort is not

very efficient, and it can be improved. However it is used here to just show you an

example of when to use the Do Loop.

Chapter 15: Structures

200

Chapter 15: Structures

Chapter 15: Structures

201

Structures

In VB.NET, you can combine a number of related variables together and treat

them as one unit. This simplifies programming and makes updating the source of your

applications easier.

Let us first consider the following example; you want to store the information about a

person/employee. The information include name, telephone number and salary. So far we

learned that to store such information you should define 3 distinct variables:

Dim Name As String

Dim TEL As String

Dim Sal As Decimal

Later on you fill these variables with values, and uses them. Now what is you have two

employees? Obviously you define another 3 variables:

Dim Name2 As String

Dim TEL2 As String

Dim Sal2 As Decimal

Now what if you have a 1000 employee? Well a better solution is to use arrays.

However now you need to define 3 arrays:

Dim Names() As String

Dim TELs() As String

Dim Sals() As Decimal

The first array stores the names, the second stores telephone numbers, and last one

stores salary. So arrays handles the information for large amount of data pretty well.

But what is you need to add another property such as address? The solution is to add

another array:

Dim Address() As String

And if you need to store another property you need to store another array. If you have

Chapter 15: Structures

202

14 property for an employee, then you have to store and manage 14 different arrays. In

such situations structures are useful. You define a structure to combine the different

properties like this:

Structure PersonInfo

Dim Name As String

Dim Tel As String

Dim Sal As Decimal

Dim Address As String

End Structure

Now you have a new data type called PersonInfo which contains inside it a name, a

telephone, a salary and an address for that particular employee/person.

Dim A As PersonInfo

A.Name = "Smith"

A.Tel = "555-22-332"

A.Sal = 400

So A here is the name of the variable and it stores all the attributes or properties of

employee/person. To access a specific property you use the dot (.) followed by the

property. For example A.NAME access the name property of that employee. Now to

define another employee/person you write:

Dim B As PersonInfo

B.Name = "Micehl"

B.Tel = "111-22-332"

B.Sal = 700

So now you have two employees A & B. Now if you want to define an array of such

structure you can do so by:

Dim Info() As PersonInfo

And you can access the elements of the array normally

Dim I As Integer

Chapter 15: Structures

203

Dim N As Integer

N = InputBox("Enter the number of people")

ReDim Info(0 To N - 1)

' read info here

For I = 0 To N - 1

Info(I).Name = InputBox("enter the name of person")

Info(I).Tel = InputBox("enter the telephone number")

Info(I).Sal = InputBox("enter the salary")

Next

So as you can see structures are used the same way as normal variables do. Now if you

want to copy the information of a structure then :

A = B

This will allow you to copy all the content and attributes of structure B into A. So it does

not matter how many attributes you have, they will all be copied in one single step.

Now let us work on an example. Create a simple form containing two buttons and a data

grid view. One of the buttons should read the data and the other should sort the data.

Create the following columns in the data grid :

· Name

· TEL

· Sal

· License

Then go to the code page of the form and define the following structure:

' this is the structure to store person information

Structure PersonInfo

Dim Name As String

Dim Tel As String

Dim Sal As Decimal

Dim LincenseNumber As String

End Structure

Then define an array of structure:

' this is the array to store persons' info

Chapter 15: Structures

204

Dim Info() As PersonInfo

Next create a subroutine to read the information of the array

' read the information and store it in an array

Public Sub ReadInfo()

Dim I As Integer

Dim N As Integer

N = InputBox("Enter the number of people")

ReDim Info(0 To N - 1)

' read info here

For I = 0 To N - 1

Info(I).Name = InputBox("enter the name of person")

Info(I).Tel = InputBox("enter the telephone number")

Info(I).Sal = InputBox("enter the salary")

Info(I).LincenseNumber = InputBox("enter license number")

Next

End Sub

After that add the following code to display the content of the array

' fill the data grid with array info

Public Sub FillDGV(ByVal DAT() As PersonInfo, ByVal DGV As DataGridView)

DGV.Rows.Clear()

Dim I As Integer

For I = 0 To DAT.Length - 1

DGV.Rows.Add(DAT(I).Name, DAT(I).Tel, DAT(I).Sal,

DAT(I).LincenseNumber)

Next

End Sub

Next is to add the code of the read button

ReadInfo()

FillDGV(Info, DataGridView1)

Next is the sort method:

' the sort subroutine

Public Sub Sort(ByRef Arr() As PersonInfo)

Chapter 15: Structures

205

Dim Flg As Boolean

Dim I As Integer

Dim Tmp As PersonInfo

Do

Flg = False

For I = 0 To Arr.Length - 2

If Arr(I).Name > Arr(I + 1).Name Then

Tmp = Arr(I)

Arr(I) = Arr(I + 1)

Arr(I + 1) = Tmp

Flg = True

End If

Next

Loop While Flg

End Sub

Look how simple the swap operation is. No need to swap the 4 attributes, you just use

one swap operation. For the second button add the following code:

Sort(Info)

FillDGV(Info, DataGridView1)

So the code should be:

Public Class Form1

' this is the structure to store person information

Structure PersonInfo

Dim Name As String

Dim Tel As String

Dim Sal As Decimal

Dim LincenseNumber As String

End Structure

' this is the array to store persons' info

Dim Info() As PersonInfo

' read the information and store it in an array

Public Sub ReadInfo()

Dim I As Integer

Dim N As Integer

N = InputBox("Enter the number of people")

ReDim Info(0 To N - 1)

Chapter 15: Structures

206

' read info here

For I = 0 To N - 1

Info(I).Name = InputBox("enter the name of person")

Info(I).Tel = InputBox("enter the telephone number")

Info(I).Sal = InputBox("enter the salary")

Info(I).LincenseNumber = InputBox("enter license

number")

Next

End Sub

' fill the data grid with array info

Public Sub FillDGV(ByVal DAT() As PersonInfo, ByVal DGV As

DataGridView)

DGV.Rows.Clear()

Dim I As Integer

For I = 0 To DAT.Length - 1

DGV.Rows.Add(DAT(I).Name, DAT(I).Tel, DAT(I).Sal,

DAT(I).LincenseNumber)

Next

End Sub

' the sort subroutine

Public Sub Sort(ByRef Arr() As PersonInfo)

Dim Flg As Boolean

Dim I As Integer

Dim Tmp As PersonInfo

Do

Flg = False

For I = 0 To Arr.Length - 2

If Arr(I).Name > Arr(I + 1).Name Then

Tmp = Arr(I)

Arr(I) = Arr(I + 1)

Arr(I + 1) = Tmp

Flg = True

End If

Next

Loop While Flg

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

Handles Button1.Click

ReadInfo()

FillDGV(Info, DataGridView1)

End Sub

Chapter 15: Structures

207

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs)

Handles Button2.Click

Sort(Info)

FillDGV(Info, DataGridView1)

End Sub

End Class

The source file contains a simple added code, you should try to use that to add more

functionality to the example. Try to include car information.

Chapter 16: Modules

208

Chapter 16: Modules

Chapter 16: Modules

209

Modules

In vb.net you can write place your code in different files. Some of these files are

called modules. A module is a file that contains vb code only (i.e. functions, structures,

subroutines…). It does not include GUI like buttons, lists, menus …etc. Now to add a

module to your project select project then add module

After that you provide module name:

Chapter 16: Modules

210

You can see the module file is added into your project. The code you see is:

Module General

End Module

Now you can write the functions and subroutines in this module. For example:

Module General

 ' define the sales structure

 Public Structure SalesStruct

 Dim Item As String

 Dim Count As Integer

 Dim Price As Single

 Dim Total As Single

 Dim TheDate As String

 Dim Flg As Boolean

 End Structure

End Module

So you might be wondering what difference does modules make in a program? Well

modules helps you place related functions, subroutines, and other coding that you make

in one place, so that it becomes easier for you to find, and easier for you to work with,

and make it possible for other parts of your program to use the code.

To illustrate this consider that you have a two or three forms that require some sort

operation. Instead of writing the code in one form which makes it part of that form, you

place the code in a module, and sort function/subroutine becomes available to all the

Chapter 16: Modules

211

forms. Later on you can even take the code of the sort operation and add that to another

project and you will find it works without modification (assuming the code is done

correctly).

Now the following example (the sales vb project included on the web site). This project

contains one module:

The idea of this project is to add a number of items you were able to sale, and later on

you could find the total of sales, save or load the files.

If you check the module you will find the code:

 ' define the sales structure

 Public Structure SalesStruct

 Dim Item As String

 Dim Count As Integer

 Dim Price As Single

 Dim Total As Single

 Dim TheDate As String

 Dim Flg As Boolean

 End Structure

Which defines the main structure, then

 ' define the main array to store sales info

Chapter 16: Modules

212

 Public Sales() As SalesStruct

 Public SalesCount As Integer

Which defines the array and its number of elements

 ' read info

 Public Function ReadSalesInfo() As SalesStruct

 AddSale.TextBox1.Text = ""

 AddSale.TextBox2.Text = ""

 AddSale.TextBox3.Text = ""

 AddSale.TextBox4.Text = ""

 AddSale.TextBox5.Text = ""

 If AddSale.ShowDialog = DialogResult.Cancel Then

 Dim dummy As SalesStruct

 dummy.Flg = False

 Return dummy

 End If

 Dim S As SalesStruct

 S.Item = AddSale.TextBox1.Text

 S.Count = AddSale.TextBox2.Text

 S.Price = AddSale.TextBox3.Text

 S.Total = AddSale.TextBox4.Text

 S.TheDate = AddSale.TextBox5.Text

 S.Flg = True

 Return S

 End Function

This function uses a dialog called AddSale to read the information of an item. The first

part just clears the text boxes on the form/dialog, and the if statement part shows the

window and tells you if the user canceled the data entry, and the last part fills the

structure from the form and returns the result.

 ' display the information of the strucutre in the data grid view

 Public Sub DisplayArray(ByVal Arr() As SalesStruct, ByVal DGV As

DataGridView)

 DGV.Rows.Clear()

 Dim I As Integer

 For I = 0 To Arr.Length - 1

 DGV.Rows.Add(Arr(I).Item, Arr(I).Count, Arr(I).Price,

Arr(I).Total, Arr(I).TheDate)

Chapter 16: Modules

213

 Next

 End Sub

This part displays the information of the array in a data grid view

 ' remove an item from array based on item name

 Public Sub RemoveItemBasedOnName(ByVal Name As String, ByRef Arr()

As SalesStruct, ByRef IC As Integer)

 Dim I As Integer

 Dim J As Integer

 For I = 0 To Arr.Length - 1

 If Name = Arr(I).Item Then

 For J = I + 1 To Arr.Length - 1

 Arr(J - 1) = Arr(J)

 Next

 ReDim Preserve Arr(0 To Arr.Length - 2)

 IC = IC - 1

 Exit Sub

 End If

 Next

 End Sub

This one removes an item based on its name

 ' save the sales info

 Public Sub SaveFile(ByVal FileName As String, ByVal Arr() As

SalesStruct)

 FileSystem.FileOpen(1, FileName, OpenMode.Output,

OpenAccess.Write)

 Dim I As Integer

 FileSystem.PrintLine(1, Arr.Length)

 For I = 0 To Arr.Length - 1

 FileSystem.PrintLine(1, Arr(I).Item)

 FileSystem.PrintLine(1, Arr(I).Price)

 FileSystem.PrintLine(1, Arr(I).TheDate)

 FileSystem.PrintLine(1, Arr(I).Total)

 Next

 FileSystem.FileClose(1)

 End Sub

 ' load the file info

Chapter 16: Modules

214

 Public Sub LoadFile(ByVal FileName As String, ByRef Arr() As

SalesStruct, ByRef IC As Integer)

 FileSystem.FileOpen(1, FileName, OpenMode.Input,

OpenAccess.Read)

 Dim I As Integer

 IC = FileSystem.LineInput(1)

 ReDim Arr(0 To IC - 1)

 For I = 0 To Arr.Length - 1

 Arr(I).Item = FileSystem.LineInput(1)

 Arr(I).Price = FileSystem.LineInput(1)

 Arr(I).TheDate = FileSystem.LineInput(1)

 Arr(I).Total = FileSystem.LineInput(1)

 Next

 FileSystem.FileClose(1)

 End Sub

These two saves and load the information

 ' get total sum

 Public Function GetTotalSales(ByVal Arr() As SalesStruct) As Single

 Dim S As Single = 0

 Dim I As Integer

 For I = 0 To Arr.Length - 1

 S += Arr(I).Total

 Next

 Return S

 End Function

This last one finds the total. As you can see there is almost no difference in the code that

is inside the module. It is exactly the same as the code you use in forms. Now if you open

the main form of the application

Chapter 16: Modules

215

This one contains a menu strip and a data grid view, with open files dialog and save file

dialog. If you check the code of the form

 Private Sub AddToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddToolStripMenuItem.Click

 Dim SR As SalesStruct

 SR = General.ReadSalesInfo

 If SR.Flg Then

 SalesCount = SalesCount + 1

 ReDim Preserve Sales(0 To SalesCount - 1)

 Sales(SalesCount - 1) = SR

 DisplayArray(Sales, DGV)

 End If

 End Sub

 Private Sub RemoveSaleToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

RemoveSaleToolStripMenuItem.Click

 If DGV.SelectedRows.Count = 0 Then

 Exit Sub

 End If

 RemoveItemBasedOnName(DGV.SelectedRows.Item(0).Cells(0).Value,

Sales, SalesCount)

 DisplayArray(Sales, DGV)

Chapter 16: Modules

216

 End Sub

 Private Sub ExitToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

ExitToolStripMenuItem.Click

 End

 End Sub

 Private Sub SaToolStripMenuItem_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles SaToolStripMenuItem.Click

 SFD.Filter = "*.txt|*.txt"

 If SFD.ShowDialog = Windows.Forms.DialogResult.Cancel Then

 Exit Sub

 End If

 SaveFile(SFD.FileName, Sales)

 End Sub

 Private Sub LoadToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

LoadToolStripMenuItem.Click

 If OFD.ShowDialog = Windows.Forms.DialogResult.Cancel Then

 Exit Sub

 End If

 LoadFile(OFD.FileName, Sales, SalesCount)

 DisplayArray(Sales, DGV)

 End Sub

 Private Sub FindTotalToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

FindTotalToolStripMenuItem.Click

 MsgBox("the total sales:" & GetTotalSales(Sales).ToString)

 End Sub

You can see the code is much smaller here, because it is just a call to the code in the

module. In fact later on if you want to modify the user interface, the code of the module

Chapter 16: Modules

217

is not affected. Also since the code is much smaller, it is easier for other programmers to

understand you code and update it.

So to sum things up, modules:

1- Are vb files

2- Used to store functions/subroutines, and other vb coding

3- Makes your program easier to maintin

4- Makes your program easier to understand

5- You can use/not use them, it is up to you

6- You can use any number of modules in a vb project

7- Make it easy to port your code to another application

8- Helps you isolate the interface design from program logic.

Chapter 17: Classes

218

Chapter 17:Classes

Chapter 17: Classes

219

Classes

 Previously we saw how to work with structures, and we examined how we can

combine related information into one logical unit. Classes are very similar to structures,

except that they allow you to combine the functions and subroutines that work on your

information as well. It also has many other useful features that allows you to create and

use frameworks to reuse the code.

To start understand classes we are going to develop a simple address book application.

The application will allow you to store user information (name, address and telephone

number).

Start visual studio, and create a new project.

First thing we are going to do is to create a simple class that will describe the information

for each contact. Usually each class is placed in a separate file. The process is similar to

adding module, or adding another form to your project. Right click your project->Add-

>Class

Chapter 17: Classes

220

Next provide the name of the class (ContactInfo)

Next you will see the following:

Chapter 17: Classes

221

Now you should start writing the code for your class. The contact for each person should

include person Name, Address and Telephone, therefore you define three variables as

shown below:

Chapter 17: Classes

222

To test this go to the form and place a button

Next try to add the following to the code of the button

Chapter 17: Classes

223

First you define a variable of type ContactInfo in a way similar to what you used to with

structures, however, when you want to access the variables of the class you will find that

the editor does not list them. Actually even if you write them manually you won’t be able

to run the program. This is because the variables within the class are protected from

access outside the class code. This helps hiding complex code and the variables you don’t

want to be accessed by mistake.

Now to make any variable accessible just change the Dim keyword in front of the

variable to Public. This will grant this variable public access from any code within the

project.

Chapter 17: Classes

224

Now if you try to access the name property, you will see that the editor can detect that,

and the property is listed when you press the (.) after the variable name.

Make the Address and Tel variables within the class public similar to the way below:

Chapter 17: Classes

225

Next add the following code to the event handler of the Button1

Now your code is completely correct from syntax point of view, however it will not run

correctly. If you run the code and then hit the button, then you get the following error:

Chapter 17: Classes

226

This brings us to the second difference of class from structure. The variable A in the

example is just a pointer to where the actual data is stored in memory, and there is not

memory resources allocated to store the name, address and tel values for A. This is why

you are getting the error.

To clarify things more, Let us say we have a structure to store exactly the same

information:

 Structure ContactInfoStruct

 Dim Name As String

 Dim Address As String

 Dim Tel As String

 End Structure

When you write

 Dim V As ContactInfoStruct

Then what happens in memory is the following:

Chapter 17: Classes

227

The variable V is allocated all the required memory resources. Unlike A, it only points to

where the actual data are located in memory. So if there are no memory resources

allocated, then A cannot point to them, and this is why you get the error. Now if you

write:

 Dim A As ContactInfo

This creates a variable that points to no actual object (Nothing):

But if you write:

 Dim A As New ContactInfo

Then an object is created, and A points to it:

Chapter 17: Classes

228

Now use the New keyword, and test the code, you will see it runs without an error.

 Dim A As New ContactInfo

Another method to do it is by using two steps:

 Dim A As ContactInfo

 A = New ContactInfo

This will have exactly the same effect. It is up to you to select which way to use.

However in some cases you need to use the second format specially if you want to create

and destroy the object linked by the same variable multiple times.

Now go to the class file and write down the following:

 Public Sub SetContactInfo(ByVal NME As String, ByVal Addr As String,

ByVal Telephone As String)

 Name = NME

 Address = Addr

 Tel = Telephone

 End Sub

This subroutine allows you to fill the variables in the class. It is a normal subroutine

except for the Public keyword placed before it. This means that you can call this

subroutine form any other code block. It is similar to using Public with variables. This is

useful if you want to hide complex functions and subroutines from outside access and

provide small number of function to use with your class. Now to test this subroutine,

Modify the Button1 event handler to be like this:

Chapter 17: Classes

229

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim A As ContactInfo

 A = New ContactInfo

 A.SetContactInfo("Smith", "UK", "123456")

 End Sub

As you can see it is used the same way variables are accessed. You write the variable

name (in this case A), followed by dot (.), followed by the function/subroutine

(SetContactInfo). This is interpreted as call the function (SetContactInfo) and use the

fields/attributes of A. If you the subroutine code:

 Name = NME

 Address = Addr

 Tel = Telephone

 This is translated to:

 A.Name = NME

 A.Address = Addr

 A.Tel = Telephone

 Now if you are using another object:

 Dim B As ContactInfo

 B = New ContactInfo

 B.SetContactInfo("Michel", "US", "123456")

The subroutine call will be interpreted as:

 B.Name = NME

 B.Address = Addr

 B.Tel = Telephone

and so on.

Chapter 17: Classes

230

Now write down the following code in the event handler and run it:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim A As New ContactInfo

 Dim B As New ContactInfo

 A.SetContactInfo("Smith", "UK", "123456")

 B.SetContactInfo("Michel", "US", "456789")

 MsgBox(A.Name)

 MsgBox(A.Address)

 MsgBox(A.Tel)

 MsgBox(B.Name)

 MsgBox(B.Address)

 MsgBox(B.Tel)

 End Sub

As you can see the code is easier to understand, and you don’t have to fill the

fields/attributes of the contact one by one. Now we will improve the way we enter the

data by reading the information from a dialog. Right click your project and select Add-

>Windows Form

Chapter 17: Classes

231

Select Dialog, and assign the name ReadContactInfoDialog:

Then select Add, the dialog design appears.

Chapter 17: Classes

232

Add three labels, and three text boxes, and make the dialog look like this:

If you check the code of the OK & Cancel buttons, you will find that it is already written.

This code is the default behavior for a dialog, so leave it as it is.

Chapter 17: Classes

233

Next we will add a subroutine to read contact information. Go to the class file and write

the following:

 Public Sub ReadContactInfo()

 ReadContactInfoDialog.TextBox1.Text = ""

 ReadContactInfoDialog.TextBox2.Text = ""

 ReadContactInfoDialog.TextBox3.Text = ""

 If ReadContactInfoDialog.ShowDialog = DialogResult.Cancel Then

 Exit Sub

 End If

 Name = ReadContactInfoDialog.TextBox1.Text

 Address = ReadContactInfoDialog.TextBox2.Text

 Tel = ReadContactInfoDialog.TextBox3.Text

 End Sub

The first part clears the text boxes from all previous input. The if statement part checks if

the user hit the cancel button, and exits the subroutine if so. If not, the execution

Chapter 17: Classes

234

continues to the last part, there the content of the text boxes are copied into the variables

of the class. To test it modify the code of the Button1 for the main window (Form1) to be

like this:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim A As New ContactInfo

 Dim B As New ContactInfo

 A.ReadContactInfo()

 B.ReadContactInfo()

 MsgBox(A.Name)

 MsgBox(A.Address)

 MsgBox(A.Tel)

 MsgBox(B.Name)

 MsgBox(B.Address)

 MsgBox(B.Tel)

 End Sub

Now run the code, and hit the button, you should see something like this:

Chapter 17: Classes

235

Enter the information and hit OK. Another window appears, fill the information of the

second contact and hit OK. After that you should be able to see the details of each

contacts appear in separate message boxes.

Instead of using the message box to display the contact information, we will create

another dialog to display such info. Just Add another dialog to the project as we did

before and name it DisplayContactInfo. And make it look like the following:

Chapter 17: Classes

236

Make sure to only remove the cancel button, and keep the OK button there. Also make

sure that all textboxes are read only. Go next to the class file and add the following

subroutine:

 Public Sub DisplayContact()

 DisplayContactInfo.TextBox1.Text = Name

 DisplayContactInfo.TextBox2.Text = Address

 DisplayContactInfo.TextBox3.Text = Tel

 DisplayContactInfo.ShowDialog()

 End Sub

This is much smaller code since it just displays the information of the object. To test that,

update the code of Button1 in Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim A As New ContactInfo

 Dim B As New ContactInfo

 A.ReadContactInfo()

 B.ReadContactInfo()

Chapter 17: Classes

237

 A.DisplayContact()

 B.DisplayContact()

 End Sub

Run the code and you will see that you can display the information in the form:

As you can see the code in Button1_Click subroutine is very straightforward and easy to

understand. You don’t have to worry about the internal details of the class. All you need

is to break your problem/your program into a number of logical units/classes each has its

own data and functions, and then you combine them together to solve the main problem.

Classes makes such thing easier to do.

Now our simple class is almost ready, so we are starting to create the main user interface

now. Remove the Button1 from the Form1 window and add a menu strip control. Create

the menu entries shown below:

Chapter 17: Classes

238

Also add a data grid view, and call it DGV, add three columns to it (one for name, one for

address, and one for tel). Disable adding, editing and deletion of rows. You should have

something similar to the following:

Double click the form and the editor opens, add the following code after Class Form1

 Dim ContactList(0 To 999) As ContactInfo

Chapter 17: Classes

239

 Dim C As Integer = 0

The ContactList is an array of type contact info. Each element of this array can point to

an object of type ContactInfo, but when the array is created it is pointing to Nothing. C is

used to tell how many objects are there in the array. When the program starts the number

of elements is Zero.

Next add the following code to the Add menu item:

 Private Sub AddToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddToolStripMenuItem.Click

 C = C + 1

 ContactList(C - 1) = New ContactInfo

 ContactList(C - 1).ReadContactInfo()

 DGV.Rows.Add(ContactList(C - 1).Name, ContactList(C -

1).Address, ContactList(C - 1).Tel)

 End Sub

This subroutine will add new contact, read the information of that contact, and then

update the display. Try this out and you should be getting something like this:

Chapter 17: Classes

240

Now the remove code should be like this:

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

RemoveToolStripMenuItem.Click

 If DGV.SelectedRows.Count = 0 Then

 Exit Sub

 End If

 Dim I As Integer

 Dim N As String

 N = DGV.SelectedRows(0).Cells(0).Value

 For I = 0 To C - 1

 If ContactList(I).Name = N Then

 DGV.Rows.Remove(DGV.SelectedRows(0))

 Dim J As Integer

 For J = I + 1 To 999

 ContactList(J - 1) = ContactList(J)

 Next

 C = C - 1

 Exit Sub

 End If

 Next

 End Sub

Notice that we are removing the contact from the display and from the array itself. Try

adding and removing few contacts and see how it works. So this concludes the chapter.

There will be more about classes in the next chapter. However there is some important

things that you must keep in mind. A variable of a class is a pointer only. A good

example to understand this is if you write the following code:

 Dim A As New ContactInfo

 Dim B As ContactInfo

 A.Name = "Smith"

 B = A

 B.Name = "John"

In the end of execution of such code, both A and B will have John as the name value.

Any change to A or B will affect the other one because simply they both point to the

Chapter 17: Classes

241

same location in memory (point to the same object in memory). But if A & B are

structures:

 Dim A As ContactInfoStruct

 Dim B As ContactInfoStruct

 A.Name = "Smith"

 B = A

 B.Name = "John"

Then A will be independent of B and changes in A will not affect B and vice versa.

Chapter 18:Classes Initialization and Finalization

242

Chapter 18: Classes Initialization and Finalization

Chapter 18:Classes Initialization and Finalization

243

Classes Initialization and Finalization

The previous chapter showed how to create a class, and how to add methods, and

attributes to it. Today we see how to initialize the objects using the New method. First

open the previous class example “testclass”. Add a new class to the project, and call it:

ContactList. This class will be used to store the contact information in the array and

manage it . In the class file add the following code:

 Dim ContactArr() As ContactInfo ' the array of object,

all elements points to nothing

 Dim C As Integer ' the number of objects

in the array

These are used to store the contact information, and the number of elements in the array

used. Next add the following method:

 Public Sub AddNewContact()

 C = C + 1 ' the number of objects

increases by one

 ContactArr(C - 1) = New ContactInfo ' create the object

 ContactArr(C - 1).ReadContactInfo() ' read the information

 End Sub

This one adds a new contact, then add:

 Public Sub RemoveContact(ByVal Name As String)

 ' search for the contact

 For I = 0 To C - 1

 If ContactArr(I).Name = Name Then

 ' next remove the contact from the array by shifting the

other objects

 Dim J As Integer

 For J = I + 1 To 999

 ContactArr(J - 1) = ContactArr(J)

 Next

 ' the number of elements reduces by one

Chapter 18:Classes Initialization and Finalization

244

 C = C - 1

 ' exit the block

 Exit Sub

 End If

 Next

 End Sub

Which will remove a contact based on name. Also, add the following method to fill the

data grid view:

 Public Sub FillDGV(ByVal DGV As DataGridView)

 ' clear the data grid view

 DGV.Rows.Clear()

 Dim I As Integer

 ' loop over all the contacts

 For I = 0 To C - 1

 ' add contact information

 DGV.Rows.Add(ContactArr(I).Name, ContactArr(I).Address,

ContactArr(I).Tel)

 Next

 End Sub

Now comes the constructor, write down the following:

 Public Sub New()

 ' first constructor, set the number of elements to zero, and set

array size to 1000

 C = 0

 ReDim ContactArr(0 To 999)

 End Sub

The name of this method is: New, and by default, when the compiler sees this, it knows

that this method should be called automatically as soon as the object is created. So

basically this method tells the computer to set the value of the counter C to zero, and

Chapter 18:Classes Initialization and Finalization

245

make the array capable of storing 1000 objects as soon as the ContactList object is

created. To test this, Go to the form, and modify the code to be like this:

Public Class Form1

 Dim OBJ As ContactList

 Private Sub AddToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddToolStripMenuItem.Click

 OBJ.AddNewContact()

 OBJ.FillDGV(DGV)

 End Sub

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

RemoveToolStripMenuItem.Click

 ' check if no rows are selected, if so no need to execute

further code, exit the subroutine

 If DGV.SelectedRows.Count = 0 Then

 Exit Sub

 End If

 Dim N As String

 ' get the selected name, it is the first column (cell zero)

 N = DGV.SelectedRows(0).Cells(0).Value

 OBJ.RemoveContact(N)

 OBJ.FillDGV(DGV)

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 OBJ = New ContactList()

Chapter 18:Classes Initialization and Finalization

246

 OBJ.FillDGV(DGV)

 End Sub

End Class

Check out the code, and specifically the Form1_Load subroutine. When the line:

 OBJ = New ContactList()

is executed, the New subroutine is called directly. You don’t have to do the call yourself,

it is automatic. Also the constructor is executed only once.

So basically the constructor helps you prepare your object before using it. To make sure

the constructor is being called, try to add a MsgBox call in the New method and see how

it works.

You can actually create a number of different constructors, and later on you can choose

which one to use based on the parameters you pass to it. For example, let us add another

constructor to our class:

 Public Sub New(ByVal NoOfReads As Integer)

 ' second constructor, set number of elements to zero, and set

array size to 1000

 C = 0

 ReDim ContactArr(0 To 999)

 ' add the contacts

 Dim I As Integer

 For I = 0 To NoOfReads - 1

 Me.AddNewContact()

 Next

 End Sub

This constructor allows you to read a number of contacts as soon as you initialize the

object without the need of going to the menu and select add contact. In order to call it,

simply use it like this:

 OBJ = New ContactList(3)

Chapter 18:Classes Initialization and Finalization

247

When the compiler sees the parameters (3), it searches for the constructor that accepts an

integer as a parameter and calls it. You can create as many constructors as you need. The

important thing is that the constructor name is always New, and each constructor should

have different parameters (either in number or in data type to help the compiler

distinguish them). Try the new constructor, and see how it works.

The last thing is the destructor. A destructor or finalizer is a method that is called when

an object is destroyed, i.e. its resources are returned into memory. Try adding the code

below:

 Protected Overrides Sub Finalize()

 ' this is how to terminate a class

 Dim I As Integer

 For I = 0 To C - 1

 ContactArr(I) = Nothing

 Next

 MyBase.Finalize()

 End Sub

Don’t worry about the MyBase, or Protected, or the Overrides keywords for now, we

will check these in later tutorials, but for now, just keep in mind that this one is being

called when the object is destroyed. As you can see what we are doing here is we are

looping over all the contactinfo objects and set them to nothing (which means we don’t

need them anymore, and we want them to be destroyed). Then after that we destroy the

object. Try this code out, and see what happens when you place an MsgBox in this

method.

Chapter 19: Classes and Inheritance

248

Chapter 19: Classes and Inheritance

Chapter 19: Classes and Inheritance

249

Classes and Inheritance

 In the previous two tutorials, the definition of classes, methods, and their

initialization is discussed. This tutorial is about how to perform inheritance. The same

example used in the last tutorial is being used here as well.

In many cases you want to take an existing class and extend its functionality. In our

previous example the class ContactList has ContatArr() which is an array used to store

the contacts, and the counter C which is used to tell how many elements we are using in

the array. It also has methods to add a contact, remove a contact, and display the contacts

in a DataGridView. What we want here is to create a new class that has the same

methods and properties as ContactList, and also has a Sort method which allows you to

sort the contacts by name.

To do so simply add another class to your project, and call it ContactsWithSort. The

first line of code in the class should be:

 Inherits ContactList

The keyword Inherits here tells the complier that the class has behave in the same way as

ContactList. In other words it is like copying the code of ContactList and pasting it to

the new class (for now you can think about it like this, it makes things easier).

Now let us try to add the new method to the class…

 Public Sub Sort() ' this class has another method called sort.

 Dim I As Integer

 Dim F As Boolean

 Dim Contact As ContactInfo

 Do

 F = False

 For I = 0 To C - 2

 If ContactArr(I).Name > ContactArr(I + 1).Name Then

 F = True

 Contact = ContactArr(I)

 ContactArr(I) = ContactArr(I + 1)

 ContactArr(I + 1) = Contact

 End If

Chapter 19: Classes and Inheritance

250

 Next

 Loop While F

 End Sub

Now if you try to run the program (even though you did not use the Sort method or the

new class itself) you will get an error. The error is for using C and ContactArr. The

error says that these variables are private. This brings up the issue of the accessibility of

variables.

When you define a variable in a class you can set its accessibility level to the following:

Public : this means that the variable can be access inside or outside the class.

Private: this means that the variable can be accessed only inside the original class it is

created in.

Protected: this means that the variable can be accessed only in the class and all inherited

classes.

So let us check this using the following example:

 Public Class test

 Dim A As Integer

 Private B As Integer

 Public C As Integer

 Protected D As Integer

 Public Sub SetA(ByVal I As Integer)

 A = I

 End Sub

 Public Sub SetB(ByVal I As Integer)

 B = I

 End Sub

 Public Sub SetC(ByVal I As Integer)

 C = I

 End Sub

 Public Sub SetD(ByVal I As Integer)

 D = I

Chapter 19: Classes and Inheritance

251

 End Sub

 End Class

In the example, A is treated as private. So if you add this method to the class:

 Public Sub SetA(ByVal I As Integer)

 A = I

 End Sub

It works perfectly fine. However, if you add the following code into a form or module:

 Dim Q As New test

 Q.A = 10

This would trigger an error because A should only be accessed from within the class.

Now let us check B which is private. If this is a method in the class, then it works.

 Public Sub SetB(ByVal I As Integer)

 B = I

 End Sub

But if you add the following code into any place other than the class test, you get an

error.

 Dim Q As New test

 Q.B = 10

So it works exactly like private. Next let us try to work with C which is Public.

 Public Sub SetC(ByVal I As Integer)

 C = I

 End Sub

This obviously works fine since it is in the same class (test). If you write the following

code in any other place other than the class test, then it works perfectly fine.

 Dim Q As New test

 Q.C = 10

Chapter 19: Classes and Inheritance

252

This works because the variable C here is public which means it can be accessed from

any other place. Now let us check the last one D which is protected. The method within

the class again has no problem

 Public Sub SetD(ByVal I As Integer)

 D = I

 End Sub

If you want to access the variable D from outside the class it is treated like private, but it

has some special treatment, which we will see later.

 Dim Q As New test

 Q.D = 10

So this triggers an error. Now let us go back to our example and see why we can’t access

the variable C and ContactArr. We used (Dim) for these two which means they are

treated like private. As we have seen before that private variables in a class can not be

accessed from outside the class itself. So we want to make them accessible. Making these

variables public means that they will be accessed from any part of the project, which is

not a good idea. If you change these variables’ visibility to protected, then the classes

inherited from them will be able to access these. An access from any other location is

denied. To test this try to create a class test2 inherited from test.

 Public Class test2

 Inherits test

 Public Sub SetAll()

 A = 10 ' error

 B = 20 ' error

 C = 30 ' correct

 D = 40 ' correct

 End Sub

 End Class

Here A is not accessible in this class simply because it is private in the original class. B is

the same so it causes the same problem. C is public in class test, so it is accessible here

Chapter 19: Classes and Inheritance

253

and everywhere else. D is protected so it is accessible in test2. The table below

summarizes how these work:

Accessibility Base Class Inherited Class Outside the Class

Dim Accessible Not Accessible Not Accessible

Private Accessible Not Accessible Not Accessible

Public Accessible Accessible Accessible

Protected Accessible Accessible Not Accessible

So going back to our example, set each of C and ContactArr in ContactList class to

protected. You will see the code now is correct.

Next, modify the object in the form to use the new class:

 Dim OBJ As ContactsWithSort

And modify the code of initialization of OBJ in the load event of the form:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 OBJ = New ContactsWithSort()

 OBJ.FillDGV(DGV)

 End Sub

Finally, add a menu item to sort the contacts, and write the following in the event

handler:

 OBJ.sort()

 OBJ.FillDGV(DGV)

Run the code check it out. Below is the full code of the ContactList class:

Public Class ContactList

Chapter 19: Classes and Inheritance

254

 Protected ContactArr() As ContactInfo ' the array of object,

all elements points to nothing

 Protected C As Integer ' the number of objects

in the array

 Public Sub AddNewContact()

 C = C + 1 ' the number of objects

increases by one

 ContactArr(C - 1) = New ContactInfo ' create the object

 ContactArr(C - 1).ReadContactInfo() ' read the information

 End Sub

 Public Sub RemoveContact(ByVal Name As String)

 ' search for the contact

 For I = 0 To C - 1

 If ContactArr(I).Name = Name Then

 ' next remove the contact from the array by shifting the

other objects

 Dim J As Integer

 For J = I + 1 To 999

 ContactArr(J - 1) = ContactArr(J)

 Next

 ' the number of elements reduces by one

 C = C - 1

 ' exit the block

 Exit Sub

 End If

 Next

 End Sub

 Public Sub FillDGV(ByVal DGV As DataGridView)

 ' clear the data grid view

 DGV.Rows.Clear()

 Dim I As Integer

 ' loop over all the contacts

Chapter 19: Classes and Inheritance

255

 For I = 0 To C - 1

 ' add contact information

 DGV.Rows.Add(ContactArr(I).Name, ContactArr(I).Address,

ContactArr(I).Tel)

 Next

 End Sub

 Public Sub New()

 ' first constructor, set the number of elements to zero, and set

array size to 1000

 C = 0

 ReDim ContactArr(0 To 999)

 End Sub

 Public Sub New(ByVal NoOfReads As Integer)

 ' second constructor, set number of elements to zero, and set

array size to 1000

 C = 0

 ReDim ContactArr(0 To 999)

 ' add the contacts

 Dim I As Integer

 For I = 0 To NoOfReads - 1

 Me.AddNewContact()

 Next

 End Sub

 Protected Overrides Sub Finalize()

 ' this is how to terminate a class

 Dim I As Integer

 For I = 0 To C - 1

 ContactArr(I) = Nothing

 Next

 MyBase.Finalize()

 End Sub

End Class

Next is the code for the ContactsWithSort class

Chapter 19: Classes and Inheritance

256

Public Class ContactsWithSort

 Inherits ContactList

' this tells the compiler that this class has the same behaviour

of ContactList

 Public Sub Sort() ' this class has another method called

sort.

 Dim I As Integer

 Dim F As Boolean

 Dim Contact As ContactInfo

 Do

 F = False

 For I = 0 To C - 2

 If ContactArr(I).Name > ContactArr(I + 1).Name Then

 F = True

 Contact = ContactArr(I)

 ContactArr(I) = ContactArr(I + 1)

 ContactArr(I + 1) = Contact

 End If

 Next

 Loop While F

 End Sub

End Class

And finally the code of the form:

Public Class Form1

 Dim OBJ As ContactsWithSort

 Private Sub AddToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

AddToolStripMenuItem.Click

 OBJ.AddNewContact()

 OBJ.FillDGV(DGV)

 End Sub

Chapter 19: Classes and Inheritance

257

 Private Sub RemoveToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

RemoveToolStripMenuItem.Click

 ' check if no rows are selected, if so no need to execute

further code, just exit the subroutine

 If DGV.SelectedRows.Count = 0 Then

 Exit Sub

 End If

 Dim N As String

 ' get the selected name, it is the first column (cell zero)

 N = DGV.SelectedRows(0).Cells(0).Value

 OBJ.RemoveContact(N)

 OBJ.FillDGV(DGV)

 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 OBJ = New ContactsWithSort()

 OBJ.FillDGV(DGV)

 End Sub

 Private Sub SortToolStripMenuItem_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

SortToolStripMenuItem.Click

 OBJ.sort()

 OBJ.FillDGV(DGV)

 End Sub

End Class

The rest of the files don’t need modification, they are the same. So as you can see

inheritance allows us to extend the functionality of an existing class, and add some

features to them.

Chapter 20: Try & Catch

258

Chapter 20: Try & Catch

Chapter 20: Try & Catch

259

Try & Catch

 When you develop a vb.net application it is very common to get what is known as

Runtime error. These are errors that might happen due to some wrong input for example,

or some computational operation during program execution. To demonstrate the idea,

create a simple vb.net application that read two values from the display and divide them.

The code should be similar to this:

 Dim A As Integer

 Dim B As Integer

 Dim C As Integer

 A = TextBox1.Text

 B = TextBox2.Text

 C = A / B

 MsgBox("The result is:" & C.ToString)

This code is correct, and should work fine. However if the value of B is zero (by entering

a value of zero in textbox2), then you will get a runtime error. This is simply because you

can not divide any number by zero (C=A/B).

This is just a simple example of the errors that you might get. VB allows you to catch

such errors so that your program don’t crash, and you can give a friendly message to the

end user or treat the error. The way to do it is by using the try statement. It should be

similar to the following:

 Try

 The code that could cause error goes here

 Catch ex As Exception

 The treatement of the error goes here

 End Try

To use this one, you can rewrite the code as follows:

 Dim A As Integer

 Dim B As Integer

 Dim C As Integer

 A = TextBox1.Text

 B = TextBox2.Text

Chapter 20: Try & Catch

260

 Try

 C = A / B

 MsgBox("The result is:" & C.ToString)

 Catch ex As Exception

 MsgBox("Error")

 End Try

What happens here is that the statements between Try and Catch are monitored for any

errors. If an error happens, then the execution will be interrupted, and a new execution

starts in the Catch part. So in the example above if the division is by zero, then a friendly

message is displayed telling the end user that there is some kind of problem is there. You

program will not crash in this case.

Another thing is that there is an object called ex. This one holds details about the error.

You can get some details about the error itself. For example:

 Try

 C = A / B

 MsgBox("The result is:" & C.ToString)

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

Here the program will give the end user the detail of the error (the message property

describes the error here). You can display other error details, or store them for debugging

purposes. Some of these are ex.StackTrace which gives you the calls that caused the

errors, and where the error exactly happened. So it is very useful.

Chapter 20: Try & Catch

261

The try statement can catch different set of errors, so using ex.Message is useful because

it can tell you what kind of error you are getting and hence you can identify where the

error is.

Last thing is that you can use a finally part with the Try statement

 Try

 The code that could cause error goes here.

 Catch ex As Exception

 The treatement of the error goes here.

 Finally

 A number of statements that always get executed.

 End Try

This part is always executed regardless of the state of execution errors. This part can be

eliminated, and you can place your code after the try statement resulting in exactly the

same effect.

So this concludes the last chapter in this simple programming book. Hope you enjoyed

learning the language and practicing some of the included examples.

Thank you.

mkaatr.

